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Multivariate Random Variables
• We rarely care about a single random variable, but multiple random variables
• A random variable is a function maps from sample space 𝑆 to the real line ℝ
• Amultivariate random variable is a function maps from sample space 𝑆 to ℝ𝑛

Chapter 4

Multivariate Distributions

4.1 Introduction

In Chapter 2 we introduced the concept of random variables. We now generalize this concept to
multiple random variables known as random vectors. To make the distinction clear we will refer to one-
dimensional random variables as univariate, two-dimensional random pairs as bivariate, and vectors
of arbitrary dimension as multivariate.

We start the chapter with bivariate random variables. Later sections generalize to multivariate ran-
dom vectors.
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Figure 4.1: Two Coin Flip Sample Space
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Joint Cumulative Distribution Function

• Joint Event (𝐴 ∩ 𝐵) or simply (𝐴, 𝐵): The event that both𝐴 and 𝐵 occur
• Joint CDF: The joint CDF of (𝑋 , 𝑌 ) is

𝐹𝑋,𝑌 (𝑥, 𝑦) = ℙ[𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] = ℙ[{𝑋 ≤ 𝑥} ∩ {𝑌 ≤ 𝑦}]
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4.3 Bivariate Distribution Functions

We now define the distribution function for bivariate random variables.

Definition 4.2 The joint distribution function of (X ,Y ) is F (x, y) =P
£

X ∑ x,Y ∑ y
§
=P

£
{X ∑ x}\

©
Y ∑ y

™§
.

We use “joint” to specifically indicate that this is the distribution of multiple random variables. For
simplicity we omit the term “joint” when the meaning is clear from the context. When we want to be
clear that the distribution refers to the pair (X ,Y ) we add subscripts, e.g. FX ,Y (x, y). When the variables
are clear from the context we omit the subscripts.

An example of a joint distribution function is F (x, y) = (1°e°x ) (1°e°y ) for x, y ∏ 0.
The properties of the joint distribution function are similar to the univariate case. The distribution

function is weakly increasing in each argument and satisfies 0 ∑ F (x, y) ∑ 1.
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Figure 4.3: Bivariate Distribution of Experience and Wages

To illustrate with a real-world example, Figure 4.3 displays the bivariate joint distribution1 of hourly
wages and work experience. Wages are plotted from $0 to $60, and experience from 0 to 50 years. The
joint distribution function increases from 0 at the origin to near one in the upper-right corner. The
function is increasing in each argument. To interpret the plot, fix the value of one variable and trace out
the curve with respect to the other variable. For example, fix experience at 30 and then trace out the plot
with respect to wages. You see that the function steeply slopes up between $14 and $24 and then flattens

1Among wage earners in the United States in 2009.

CHAPTER 4. MULTIVARIATE DISTRIBUTIONS 77

out. Alternatively fix hourly wages at $30 and trace the function with respect to experience. In this case
the function has a steady slope up to about 40 years and then flattens.

(x,y)

P[X ≤ x, Y ≤ y]

Figure 4.4: Bivariate Joint Distribution Calculation

Figure 4.4 illustrates how the joint distribution function is calculated for a given (x, y). The event {X ∑
x,Y ∑ y} occurs if the pair (X ,Y ) lies in the shaded region (the region to the lower-left of the point (x, y)).
The distribution function is the probability of this event. In our empirical example, if (x, y) = (30,30) then
the calculation is the joint probability that wages are less than or equal to $30 and experience is less than
or equal to 30 years. It is difficult to read this number from the plot in Figure 4.3 but it equals 0.58. This
means that 58% of wage earners satisfy these conditions.

The distribution function satisfies the following relationship

P [a < X ∑ b,c < Y ∑ d ] = F (b,d)°F (b,c)°F (a,d)+F (a,c) .

See Exercise 4.5. This is illustrated in Figure 4.5.
The shaded region is the set

©
a < x ∑ b,c < y ∑ d

™
. The probability that (X ,Y ) is in the set is the joint

probability that X is in (a,b] and Y is in (c,d ], and can be calculated from the distribution function
evaluated at the four corners. For example

P
£
10 < wage ∑ 20,10 < experience ∑ 20

§
= F (20,20)°F (20,10)°F (10,20)+F (10,10)

= 0.265°0.131°0.073+0.042

= 0.103.

Thus about 10% of wage earners satisfy these conditions.
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Joint Density andMass Functions

• The joint distribution of (𝑋 , 𝑌 ) is continuous if 𝐹𝑋,𝑌 (𝑥, 𝑦) is continuous in (𝑥, 𝑦)
• For continuousmultivariate random variable (𝑋 , 𝑌 ), its Joint PDF is

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝜕2
𝜕𝑥𝜕𝑦 𝐹𝑋,𝑌 (𝑥, 𝑦)

• The joint distribution of (𝑋 , 𝑌 ) is discrete if 𝐹𝑋,𝑌 (𝑥, 𝑦) is discrete in (𝑥, 𝑦)
• For discretemultivariate random variable (𝑋 , 𝑌 ), its Joint PMF is

𝑓𝑋,𝑌 (𝑥, 𝑦) = ℙ[𝑋 = 𝑥, 𝑌 = 𝑦] (1)

4 / 36



Marginal Density andMass Functions

• We have the samemarginalization properties for density and mass functions
• For continuousmultivariate random variable (𝑋 , 𝑌 ), itsMarginal PDFs are

𝑓𝑋 (𝑥) = ∫
∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 and 𝑓𝑌 (𝑦) = ∫

∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥

• For discretemultivariate random variable (𝑋 , 𝑌 ), itsMarginal PMFs are

𝑓𝑋 (𝑥) = ℙ[𝑋 = 𝑥] = ∑
𝑦∈𝒴

ℙ[𝑋 = 𝑥, 𝑌 = 𝑦] = ∑
𝑦∈𝒴

𝑓𝑋,𝑌 (𝑥, 𝑦)

𝑓𝑌 (𝑦) = ℙ[𝑌 = 𝑦] = ∑
𝑥∈𝒳

ℙ[𝑋 = 𝑥, 𝑌 = 𝑦] = ∑
𝑥∈𝒳

𝑓𝑋,𝑌 (𝑥, 𝑦)

where𝒳 = {𝑥1, 𝑥2…} denotes the support of 𝑋 and𝒴 = {𝑦1, 𝑦2…} denotes the
support of 𝑌
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Conditional Distribution, Density, andMass

• We often want to know the distribution of 𝑌 given some variable 𝑋 = 𝑥
▶ E.g. How distribution of wage (𝑌 ) is different across gender (𝑋 )

• We can define the Conditional Distribution function of 𝑌 given 𝑋 = 𝑥 as

𝐹𝑌 |𝑋 (𝑦 |𝑥) = ℙ[𝑌 ≤ 𝑦 | 𝑋 = 𝑥]
• We can also define the Conditional Density/Mass function of 𝑌 given 𝑋 = 𝑥 as

𝑓𝑌 |𝑋 (𝑦 |𝑥) =
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋 (𝑥)

for all 𝑓𝑋 (𝑥) > 0
• Product Rule for density/mass:

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌 |𝑋 (𝑦 |𝑥) ⋅ 𝑓𝑋 (𝑥) for all 𝑓𝑋 (𝑥) > 0
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Conditional CDF and PDF/PMF
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Figure 4.8: Conditional Distribution of Hourly Wages Given Education

Example 4: (continued). The conditional density functions f (y | x) corresponding to the conditional
distributions displayed in Figure 4.8 are displayed in Figure 4.9. By examining the density function it is
easier to see where the probability mass is distributed. Compare the conditional densities for those with
a high school (x = 12) and college (x = 16) degree. The latter density is shifted to the right and is more
spread out. Thus college graduates have higher average wages but they are also more dispersed. While
the conditional density for college graduates is substantially shifted to the right there is a considerable
area of overlap between the density functions. Next compare the conditional densities of the college
graduates and those with master’s degrees (x = 18). The latter density is shifted to the right, but rather
modestly. Thus these two densities are more similar than dissimilar. Now compare these conditional
densities with the final density, that for the highest education level (x = 20). This conditional density
function is substantially shifted to the right and substantially more dispersed.

4.9 Conditional Distribution for Continuous X

The conditional density for continuous random variables is defined as follows.

Definition 4.9 For continuous X and Y the conditional density of Y given X = x is

fY |X (y | x) = f (x, y)
fX (x)

for any x such that fX (x) > 0.
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Figure 4.9: Conditional Density of Hourly Wages Given Education

If you are satisfied with this definition you can skip the remainder of this section. However, if you
would like a justification, read on.

Recall that the definition of the conditional distribution function for the case of discrete X is

FY |X (y | x) =P
£
Y ∑ y | X = x

§
.

This does not apply for the case of continuous X because P [X = x] = 0. Instead we can define the condi-
tional distribution function as a limit. Thus we propose the following definition.

Definition 4.10 For continuous X and Y the conditional distribution of Y given X = x is

FY |X (y | x) = lim
≤#0

P
£
Y ∑ y | x °≤∑ X ∑ x +≤

§
.

This is the probability that Y is smaller than y , conditional on X being in an arbitrarily small neigh-
borhood of x. This is essentially the same concept as the definition for the discrete case. Fortunately the
expression can be simplified.

Theorem 4.1 If F (x, y) is differentiable with respect to x and fX (x) > 0 then FY |X (y | x) =
@
@x F (x, y)

fX (x)
.

This result shows that the conditional distribution function is the ratio of a partial derivative of the
joint distribution to the marginal density of X .
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Independence of Random Variables

• We have defined the independence of two events, now for random variables
• Random variables 𝑋 and 𝑌 are independent if and only if

▶ Events {𝑋 ≤ 𝑥} and {𝑌 ≤ 𝑦} are independent; in other words

ℙ [{𝑋 ≤ 𝑥} ∩ {𝑌 ≤ 𝑦}] = ℙ[𝑋 ≤ 𝑥] ℙ[𝑌 ≤ 𝑦] = 𝐹𝑋 (𝑥) 𝐹𝑌 (𝑦)
• Independence between random variables 𝑋 and 𝑌 (can be derived from above):

▶ Based on CDFs:
1. 𝐹𝑋|𝑌 (𝑥 | 𝑦) = 𝐹𝑋 (𝑥) for all 𝑥 and 𝑦
2. 𝐹𝑌 |𝑋 (𝑦 | 𝑥) = 𝐹𝑌 (𝑦) for all 𝑥 and 𝑦
3. 𝐹𝑋,𝑌 (𝑥, 𝑦) = 𝐹𝑋 (𝑥) 𝐹𝑌 (𝑦) for all 𝑥 and 𝑦

▶ Based on PDFs/PMFs:
1. 𝑓𝑋|𝑌 (𝑥 | 𝑦) = 𝑓𝑋 (𝑥) for all 𝑥 and 𝑦
2. 𝑓𝑌 |𝑋 (𝑦 | 𝑥) = 𝑓𝑌 (𝑦) for all 𝑥 and 𝑦
3. 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) for all 𝑥 and 𝑦
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Independence and Covariance
• Show that if 𝑋 and 𝑌 are independent, then

▶ ℂov[𝑋 , 𝑌 ] = 0

▶ 𝕍ar[𝑋 + 𝑌 ] = 𝕍ar[𝑋] + 𝕍ar[𝑌 ]
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Conditional Expectation Function (CEF)

• An important concept in regression is conditional expectation

𝔼 [𝑌 | 𝑋1, 𝑋2, 𝑋3] ≈ 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3
▶ E.g. 𝑌 =wage, 𝑋1 = gender, 𝑋2 = race, 𝑋3 = age

• The conditional expectation is the central tendency of a conditional distribution

𝔼[𝑌 | 𝑋 = 𝑥] =
⎧⎪
⎨⎪⎩

∫
∞

−∞
𝑦 ⋅ 𝑓𝑌 |𝑋 (𝑦 |𝑥) 𝑑𝑦 = ∫

∞

−∞
𝑦 ⋅ 𝑓𝑋,𝑌 (𝑥, 𝑦)

𝑓𝑋 (𝑥)
𝑑𝑦 if 𝑋 continuous

∑
𝑦∈𝒴

𝑦 ⋅ 𝑓𝑌 |𝑋 (𝑦 |𝑥) = ∑
𝑦∈𝒴

𝑦 ⋅ ℙ[𝑌 = 𝑦 | 𝑋 = 𝑥] if 𝑋 discrete

• This tells us the average of 𝑌 given that 𝑋 equals the specific value 𝑥
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Conditional Expectation Function (CEF)
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Figure 4.11: Conditional Expectation Functions

Thus the restaurant can expect to serve (on average) more drinks to customers who purchase two slices
of pizza.

Example 2: (continued): The conditional expectation of Y given X = x is

E [Y | X = x] =
Z1

0
y fY |X (y | x)d y

=
Z1

0
y

°
x y + y2¢exp

°
°y

¢

x +2
d y

= 2x +6
x +2

.

This conditional expectation function is downward sloping for x ∏ 0. Thus as x increases the expected
value of Y declines.

Example 3: (continued). The conditional expectation of wages given experience is displayed in Figure
4.11(a). The x-axis is years of experience. The y-axis is wages. You can see that the expected wage is about
$16.50 for 0 years of experience, and increases near linearily to about $26 by 20 years of experience. Above
20 years of experience the expected wage falls, reaching about $21 by 50 years of experience. Overall the
shape of the wage-experience profile is an inverted U-shape, increasing for the early years of experience,
and decreasing in the more advanced years.

Example 4: (continued). The conditional expectation of wages given education is displayed in Figure
4.11(b). The x-axis is years of education. Since education is discrete the conditional mean is a discrete
function as well. Examining Figure 4.11(b) we see that the conditional expectation is monotonically
increasing in years of education. The mean is $11.75 for an individual with 8 years of education, $17.61
for an individual with 12 years of education, $21.49 for an individual with 14 years, $30.12 for 16 years,
$35.16 for 18 years, and $51.76 for 20 years.

• When 𝑋 is discrete, it is the expected value of 𝑌 within the sub-population for
which 𝑋 = 𝑥
▶ ex. 𝑋 is gender,𝔼[𝑌 |𝑋 = 𝑥] is the expected value of 𝑌 for men andwomen, separately

• When X is continuous, it is the expected value of 𝑌 within the infinitesimally
small population for which 𝑋 ≈ 𝑥

11 / 36



Expectation of Conditional Expectation

• Notice that𝑚(𝑥) = 𝔼[𝑌 | 𝑋 = 𝑥] is a function of 𝑥
▶ Once 𝑋 is observed, 𝔼[𝑌 | 𝑋 = 𝑥] is a known fixed number
▶ Before 𝑋 is observed, 𝔼[𝑌 | 𝑋] = 𝑚(𝑋) is a random variable

• We can average𝑚(⋅) across 𝑋 (take expectation): 𝔼[𝑚(𝑋)] = 𝔼[𝔼[𝑌 | 𝑋]]
• Law of Iterated Expectations:

𝔼[𝔼[𝑌 | 𝑋]] = 𝔼𝑋 [𝔼𝑌 |𝑋 [𝑌 | 𝑋 ]] = 𝔼[𝑌 ]
▶ Intuition: Weighted average of 𝔼[𝑌 | 𝑋 = 𝑥], using ℙ[𝑋 = 𝑥] as weights
▶ The average across group averages is the grand average
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Law of Iterated Expectations
• Special case when 𝑋 is discrete:

𝔼[𝔼[𝑌 | 𝑋]] = ∑
𝑥

𝔼[𝑌 | 𝑋 = 𝑥] ℙ[𝑋 = 𝑥] = 𝔼[𝑌 ]
▶ Can think of it as the product rule for conditional expectations

• Show that
𝔼[𝔼[𝑌 | 𝑋]] = 𝔼𝑋 [𝔼𝑌 |𝑋 [𝑌 | 𝑋 ]] = 𝔼[𝑌 ]
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Properties of Conditional Expectation

• 𝔼[ 𝑔(𝑋) 𝑌 | 𝑋 ] = 𝑔(𝑋) 𝔼[ 𝑌 | 𝑋 ]

• 𝔼[𝔼[ 𝑌 | 𝑋] | 𝑋 ] = 𝔼[ 𝑌 | 𝑋 ]
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Conditional Variance

• What about the variance of a conditional distribution?
• Similarly, we define the Conditional Variance as

𝕍ar[𝑌 | 𝑋 = 𝑥] = 𝔼 [(𝑌 − 𝔼 [𝑌 | 𝑋 = 𝑥])2 | 𝑋 = 𝑥]
= 𝔼[𝑌 2 | 𝑋 = 𝑥] − 𝔼[𝑌 | 𝑋 = 𝑥]2
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Figure 4.12: Conditional Variance Functions

4.17 Hölder’s and Minkowski’s Inequalities*

The following inequalities are useful generalizations of the Cauchy-Schwarz inequality.

Theorem 4.15 Hölder’s Inequality. For any random variables X and Y and any p ∏ 1 and q ∏ 1 satisfying
1/p +1/q = 1,

E |X Y |∑
°
E |X |p

¢1/p °
E |Y |q

¢1/q .

Proof: By the Geometric Mean Inequality (Theorem 2.13) for non-negative a and b

ab =
°
ap¢1/p °

bq¢1/q ∑ ap

p
+ bq

q
. (4.3)

Without loss of generality assume E |X |p = 1 and E |Y |q = 1. Applying (4.3)

E |X Y |∑ E |X |p
p

+ E |Y |q
q

= 1
p
+ 1

q
= 1

as needed. Á

Theorem 4.16 Minkowski’s Inequality. For any random variables X and Y and any p ∏ 1

°
E |X +Y |p

¢1/p ∑
°
E |X |p

¢1/p +
°
E |Y |p

¢1/p .

Proof. Using the triangle inequality and then applying Hölder’s inequality (Theorem 4.15) to the two
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Conditional Variance

• Law of Total Variance:

𝕍ar[𝑌 ] = 𝔼 [𝕍ar [𝑌 | 𝑋 ]] + 𝕍ar [𝔼 [𝑌 | 𝑋]]
▶ We can decompose the variability of a random variable 𝑌 into two parts:

• Average variability “within” each values of 𝑋 : 𝔼 [𝕍ar [𝑌 | 𝑋 ]]
• Variability of means “across” values of 𝑋 : 𝕍ar [𝔼 [𝑌 | 𝑋]]
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Standard Normal Distribution

• 𝑍 ∼ Normal(0, 1) if 𝑍 has PDF

𝑓𝑍 (𝑧) = 1
√2𝜋

𝑒− 1
2 𝑧2𝟙(−∞ < 𝑧 < ∞)

• The support of 𝑍 is (−∞,∞)
• The CDF of standard normal disribution is

Φ(𝑥) = 𝐹𝑍 (𝑧) = 1
√2𝜋 ∫

𝑥

−∞
𝑒− 1

2 𝑧2 𝑑𝑧
• The normal distribution is the most commonly-used distribution
• The standard normal density function is typically written as 𝜙(𝑥), and the

distribution function as Φ(𝑥)
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Standard Normal Distribution
• 𝑍 ∼ Normal(0, 1) if 𝑍 has PDF

𝑓𝑍 (𝑧) = 1
√2𝜋

𝑒− 1
2 𝑧2𝟙(−∞ < 𝑧 < ∞)

• What is 𝔼[𝑍]?
▶ Hint: Show that ∫∞0 𝑧𝜙(𝑧) 𝑑𝑧 = − ∫0−∞ 𝑧𝜙(𝑧) 𝑑𝑧
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Standard Normal Distribution
• 𝑍 ∼ Normal(0, 1) if 𝑍 has PDF

𝑓𝑍 (𝑧) = 1
√2𝜋

𝑒− 1
2 𝑧2𝟙(−∞ < 𝑧 < ∞)

• What is𝕍ar[𝑍]?
▶ Hint: 𝕍ar[𝑍] = 𝔼[𝑍 2] − 𝔼[𝑍]2, let 𝑢 = 𝑧, 𝑑𝑣 = 𝑧𝑒− 1

2 𝑧2𝑑𝑧
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Normal Distribution
• Show that if 𝑍 ∼ 𝑁(0, 1), then 𝑋 = 𝜇 + 𝜎𝑍 ∼ 𝑁(𝜇, 𝜎2)

▶ This means that you can “standardize” any normal random variable by 𝑥−𝜇
𝜎▶ Consider ℙ[𝑋 ≤ 𝑥]
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Normal Distribution

• Derive the pdf of𝑁(𝜇, 𝜎2)
▶ Take derivative of CDF: 𝐹𝑍 ( 𝑥−𝜇𝜎 )
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Normal PDF and CDF
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Random Sample

CHAPTER 6. SAMPLING 129

observation is created – for example a controlled experiment, or alternatively an observational study –
and this process is repeated n times. Here the population is the probability model which generates the
observations.

An important component of sampling is the number of observations.

Definition 6.3 The sample size n is the number of individuals in the sample.

In econometrics the most common notation for the sample size is n. Other common choices include
N and T . Sample sizes can range from 1 up into the millions. When we say that an observation is an “in-
dividual” it does not necessarily mean an individual person. In economic data sets observations can be
collected on households, corporations, production plants, machines, patents, goods, stores, countries,
states, cities, villages, schools, classrooms, students, years, months, days, or other entities.

Typically, we will use X without the subscript to denote a random variable or vector with distribution
F , Xi with a subscript to denote a random observation in the sample, and xi or x to denote a specific or
realized value.
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Figure 6.1: Sampling and Inference

Figure 6.1 illustrates the process of sampling. On the left is the population of letters “a” through “z”.
Five are selected at random and become the sample indicated on the right.

The problem of inference is to learn about the underlying process – the population distribution or
data generating process – by examining the observations. Figure 6.1 illustrates the problem of inference
by the arrow drawn at the bottom of the graph. Inference means that based on the sample (in this case
the observations {b,e,h,m,x}) we want to infer properties of the originating population.

• Statistics/Inference: Learning properties of the population from samples
• Sample/Data: A collection of random variables from a population

{𝑋𝑖}𝑛𝑖=1 = {𝑋1, … , 𝑋𝑛}
• RandomSample: A sample that is independent and identically distributed (i.i.d.),

i.e, they aremutually independentwith identical marginal distributions 𝐹𝑋
𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝐹𝑋
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observation is created – for example a controlled experiment, or alternatively an observational study –
and this process is repeated n times. Here the population is the probability model which generates the
observations.

An important component of sampling is the number of observations.

Definition 6.3 The sample size n is the number of individuals in the sample.

In econometrics the most common notation for the sample size is n. Other common choices include
N and T . Sample sizes can range from 1 up into the millions. When we say that an observation is an “in-
dividual” it does not necessarily mean an individual person. In economic data sets observations can be
collected on households, corporations, production plants, machines, patents, goods, stores, countries,
states, cities, villages, schools, classrooms, students, years, months, days, or other entities.

Typically, we will use X without the subscript to denote a random variable or vector with distribution
F , Xi with a subscript to denote a random observation in the sample, and xi or x to denote a specific or
realized value.
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Figure 6.1: Sampling and Inference

Figure 6.1 illustrates the process of sampling. On the left is the population of letters “a” through “z”.
Five are selected at random and become the sample indicated on the right.

The problem of inference is to learn about the underlying process – the population distribution or
data generating process – by examining the observations. Figure 6.1 illustrates the problem of inference
by the arrow drawn at the bottom of the graph. Inference means that based on the sample (in this case
the observations {b,e,h,m,x}) we want to infer properties of the originating population.

• Parameter 𝜃 : A measured quantity of the population 𝐹𝑋 e.g. 𝑝, 𝔼[𝑋],𝕍ar[𝑋]
• Statistic: Any function of the sample {𝑋1, … , 𝑋𝑛} e.g. 1𝑛 ∑

𝑛
𝑖=1 𝑋𝑖

• Sampling Distribution: The distribution of a statistic
• Estimator for a parameter 𝜃 : A statistic intended as a guess about 𝜃

̂𝜃 = ̂𝜃 (𝑋1, … , 𝑋𝑛)
• Estimate: Realized value of the estimator on a specific sample

̂𝜃 (𝑥1, … , 𝑥𝑛) = ̂𝜃 (𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)
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Some Possible Statistics

• The sample mean is a statistic:

𝑋 𝑛 = 𝑋 𝑛(𝑋1, … , 𝑋𝑛) = 1
𝑛 (𝑋1 + ⋯ + 𝑋𝑛)

• Another possible, but quite naive, statistic can be:

𝑋1 = 𝑋1(𝑋1, … , 𝑋𝑛) = 𝑋1
• You can define whatever statistic you want, but some are better than others

▶ Note that any statistic is also a random variablewith its own distribution
▶ The distribution of a statistic is called its sampling distribution

• Suppose we’re interested in estimating parameter from the population 𝐹𝑋
𝜇 = 𝔼[𝑋] = ∫

∞

−∞
𝑥 𝑓𝑋 (𝑥) 𝑑𝑥
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Sample Mean and Bias

• If 𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝐹𝑋 and 𝔼[𝑋] = 𝜇, then
𝔼 [𝑋 𝑛] = 1

𝑛 (𝔼[𝑋1] + ⋯ + 𝔼[𝑋𝑛]) = 1
𝑛 (𝜇 + ⋯ + 𝜇) = 𝜇

• The bias of an estimator ̂𝜃 is defined as the difference between the expected
value of the estimator and the true value of the parameter

Bias[ ̂𝜃 , 𝜃] = 𝔼[ ̂𝜃] − 𝜃
• If drawn from a random sample, the sample mean 𝑋 𝑛 is an unbiased estimator
for populationmean 𝜇 because

Bias[𝑋 𝑛, 𝜇] = 𝔼[𝑋 𝑛] − 𝜇 = 𝜇 − 𝜇 = 0
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Weak Law of Large Numbers (WLLN)

Weak Law of Large Numbers

Let 𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝐹𝑋 and𝕍ar[𝑋] < ∞, then for all 𝜀 > 0,

lim𝑛→∞ℙ
⎡⎢⎢⎢⎢⎢
⎣

|1𝑛
𝑛
∑
𝑖=1

𝑋𝑖 − 𝔼[𝑋]|
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Distance between 𝑋 𝑛 and 𝔼[𝑋]

≥ 𝜀
⎤⎥⎥⎥⎥⎥
⎦

= 0 (𝑋 𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
𝑝−→ 𝔼[𝑋])

• As𝑁 gets large, the sample mean becomes increasingly likely to approximate
𝔼[𝑋] to any arbitrary degree of precision

• This ensures the consistency of sample mean: 1𝑛
𝑛
∑
𝑖=1

𝑋𝑖 → 𝔼[𝑋] as 𝑛 → ∞
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Weak Law of Large Numbers (WLLN)
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The Variance of Sample Mean

• 𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝐹𝑋 , 𝔼[𝑋] = 𝜇,𝕍ar[𝑋] = 𝜎2
• Show that𝕍ar [𝑋 𝑛] = 𝜎2

𝑛

• Show that 𝔼 [(𝑋 𝑛)
2] = 𝔼 [(1𝑛 ∑

𝑛
𝑖=1 𝑋𝑖)

2] = 𝜎2
𝑛 + 𝜇2
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Sample Variance

• The 𝑘-th moment of 𝑋 is 𝔼[𝑋 𝑘]
• Plug-in Principle: 1𝑛 ∑

𝑛
𝑖=1 𝑋 𝑘𝑖 is often a good estimator for 𝔼[𝑋 𝑘]

• Show that 𝔼 [1𝑛 ∑
𝑛
𝑖=1 𝑋 2𝑖 ] = 𝜎2 + 𝜇2

• In principle, we can use 1
𝑛 ∑

𝑛
𝑖=1 𝑋 2𝑖 − 𝜇2 to estimate 𝜎2, but often 𝜇 is unknown
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Sample Variance
• What about

�̂�2 = 1
𝑛

𝑛
∑
𝑖=1

𝑋 2𝑖 − (1𝑛
𝑛
∑
𝑖=1

𝑋𝑖)
2
= 1

𝑛
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)
2

▶ 𝔼[ 1𝑛 ∑
𝑛
𝑖=1 𝑋 2𝑖 ] = 𝜎2 + 𝜇2

▶ 𝔼 [( 1𝑛 ∑
𝑛
𝑖=1 𝑋𝑖)

2] = 𝜎2
𝑛 + 𝜇2

▶ So we have that 𝔼 [�̂�2] = 𝔼 [ 1𝑛 ∑
𝑛
𝑖=1 𝑋 2𝑖 − ( 1𝑛 ∑

𝑛
𝑖=1 𝑋𝑖)2] = 𝑛−1

𝑛 𝜎2
• We define sample variance 𝑠2 such that 𝔼[𝑠2] = 𝜎2

𝑠2 = 𝑛
𝑛 − 1�̂�

2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)
2
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Common Statistics and Sampling Distributions

• Let 𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝑁(𝜇, 𝜎2), and let

𝑋 𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)
2

• We can show that 𝑋 𝑛 and 𝑠2 are independent, and 𝑋 𝑛 ∼ 𝑁(𝜇, 𝜎2/𝑛)
• We can define the t-statistic

𝑡 = 𝑋 𝑛 − 𝜇
𝑠/√𝑛

∼ 𝑡𝑛−1
▶ Studentized sample mean follows t-distributionwith 𝑛 − 1 degrees of freedom
▶ Used for test of mean of a population or two populations
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Common Statistics and Sampling Distributions

• We can compare the sample variance to the population variance
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇
𝜎 )

2
∼ 𝜒2𝑛

(𝑛 − 1)𝑠2
𝜎2 =

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋 𝑛
𝜎 )

2
∼ 𝜒2𝑛−1

▶ The sample variance divided by population variance follows Chi-squared
distribution

▶ Used for test of goodness-of-fit with respect to a population
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Common Statistics and Sampling Distributions

• We can compare the variability of two populations
• Let 𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝑁(𝜇, 𝜎2), and 𝑌1, … , 𝑌𝑚 ∼ i.i.d. 𝑁(𝜇𝑌 , 𝜎2𝑌 ), then

𝐹 = 𝑠2𝑋/𝜎2𝑋
𝑠2𝑌/𝜎2𝑌

= 𝜒2𝑛−1/(𝑛 − 1)
𝜒2𝑚−1/(𝑚 − 1) ∼ 𝐹𝑛−1,𝑚−1

▶ The ratio of two sample variance divided by population variance follows
F-distribution

▶ Used for comparing the variability of two populations
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Central Limit Theorem (CLT)

Central Limit Theorem
Let 𝑋1, … , 𝑋𝑛 ∼ i.i.d. 𝐹𝑋 , 𝔼[𝑋] = 𝜇, and𝕍ar[𝑋] = 𝜎2 < ∞

lim𝑛→∞ ℙ [𝑋 𝑛 − 𝜇
√𝜎2/𝑛

≤ 𝑥]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

CDF of standardized sample mean

= 1
√2𝜋 ∫

𝑥

−∞
𝑒− 1

2 𝑧2 𝑑𝑧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

CDF of standard normal distribution

(√𝑛(𝑋 𝑛 − 𝜇)
𝜎

𝑑−→ 𝑁(0, 1))

• If 𝑛 is large, the sampling distribution of the sample mean will tend to be
approximately normal no matter how weirdly the population under
consideration distributed

• It will allow us to rigorously quantify uncertainty when 𝑛 is large
35 / 36



Central Limit Theorem (CLT)
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