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Multivariate Random Variables

» We rarely care about a single random variable, but multiple random variables
* Arandom variable is a function maps from sample space S to the real line R
* A multivariate random variable is a function maps from sample space S to R"
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Joint Cumulative Distribution Function

* Joint Event (A n B) or simply (A, B): The event that both A and B occur
+ Joint CDF: The joint CDF of (X,Y) is
Fxy(x,y) =P[X <xY <y]=PH{X < x}n{Y <y}

PIX<x, Y=<y]
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Joint Density and Mass Functions

The joint distribution of (X,Y) is continuous if Fx y(x, ) is continuous in (x, y)
* For continuous multivariate random variable (X, Y), its Joint PDF is

52
0xady

fxy(x,y) = Fxy(x,y)

The joint distribution of (X, Y) is discrete if Fx y(x, ) is discrete in (x, )

For discrete multivariate random variable (X,Y), its Joint PMF is

fxy(y) =P[X =xY =y] (M
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Marginal Density and Mass Functions

* We have the same marginalization properties for density and mass functions
* For continuous multivariate random variable (X,Y), its Marginal PDFs are

o0 (o)

5= | fertendy and fi)= | eyt

* For discrete multivariate random variable (X, Y), its Marginal PMFs are

fx@)=P[X=x]= Y PX=xY=yl= ) fxy(xy)

yey yey¥
=Py =yl= Y P[X=xY=y]= ) fyy(xy)
xeZ xeZ

where & = {xy, x, ...} denotes the support of X and % = {yy, ¥ ...} denotes the
support of Y
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Conditional Distribution, Density, and Mass

* We often want to know the distribution of Y given some variable X = x
» E.g. How distribution of wage (Y) is different across gender (X)

We can define the Conditional Distribution function of Y given X = x as
Fyx(ylx) = P[Y < y[ X = x]
We can also define the Conditional Density/Mass function of Y given X = x as
fxy(x,y)
fx(x)

Frixlx) = forall fy(x) >0

Product Rule for density/mass:

Ty, y) = fyx(ylx) - fx(x)  forall fx(x) >0
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Conditional CDF and PDF/PMF
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Independence of Random Variables

* We have defined the independence of two events, now for random variables
* Random variables X and Y are independent if and only if
» Events {X < x} and {Y < y} areindependent; in other words
P[{X <x}n{Y <y} =P[X < x] P[Y < y] = Fy(x) F(y)
* Independence between random variables X and Y (can be derived from above):

> Based on CDFs:

1. Fyy(x|y) = Fx(x) forallxandy

2. Fyx(y|x) = F(y) forallxandy

3. Fxy(x,y) = Fx(x) Fy(y) forallxandy
> Based on PDFs/PMFs:

1. fxy(xly) = fx(x) forallxandy
2. fyx(y1x) = fy(y) forallxandy
3. fxy(xy) = fx(x) fy(y) forallxandy
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Independence and Covariance

* Show that if X and Y are independent, then
» Cov[X,Y]=0

» Var[X + Y] = Var[X] + Var[Y]
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Conditional Expectation Function (CEF)

* Animportant concept in regression is conditional expectation
E[Y | X1, Xz, X3] = fi X1 + o Xz + B3 X3
» E.g.Y =wage, X; =gender, X, =race, X5 = age

* The conditional expectation is the central tendency of a conditional distribution

J v frx(lx)dy = J y- fxx(x.y) dy if X continuous
_ =] Jee —0 fx(x)
E[Y|X =x]=
Z v frix(lx) = Z y-PlY =y| X =x] if X discrete
V€Y yeY

* This tells us the average of Y given that X equals the specific value x
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Conditional Expectation Function (CEF)
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* When X is discrete, it is the expected value of Y within the sub-population for
which X = x
> ex. Xisgender, E[Y|X = x] is the expected value of Y for men and women, separately

* When X is continuous, it is the expected value of Y within the infinitesimally
small population for which X = x
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Expectation of Conditional Expectation

* Notice that m(x) = E[Y | X = x] is a function of x

» Once X is observed, E[Y | X = x] is a known fixed number
> Before X is observed, E[Y | X] = m(X) is a random variable

+ We can average m(-) across X (take expectation): E[m(X)] = E[E[Y | X]]
* Law of Iterated Expectations:
E[E[Y|X]] = Ex[Eyx[Y | X]] = E[Y]

> Intuition: Weighted average of E[Y | X = x], using P[ X = x] as weights
> The average across group averages is the grand average
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Law of Iterated Expectations

* Special case when X is discrete:
E[E[Y|X]] = ) E[Y|X = x] P[X = x] = E[Y]
X
» Can think of it as the product rule for conditional expectations

* Show that
E[E[Y | X]] = Ex[Ey)x[Y | X]] = E[Y]
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Properties of Conditional Expectation

* E[g(X)Y[X] = g(X) E[Y[X]

* E[E[Y[X][X]= E[Y[X]
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Conditional Variance

* What about the variance of a conditional distribution?
+ Similarly, we define the Conditional Variance as

Var[Y | X =x] =E[(Y ~E[Y|X = x])* | X = x]
= E[Y?| X = x] -E[Y | X = x]?
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Conditional Variance

* Law of Total Variance:

Var[Y] = E[Var[Y|X]] + Var[E[Y | X]]

» We can decompose the variability of a random variable Y into two parts:
* Average variability “within” each values of X: E [Var [Y | X]]
* Variability of means “across” values of X: Var [E[Y | X]]
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Standard Normal Distribution

Z ~Normal(0, 1) if Z has PDF

1 1
7(z) = ——e 27 1(—00 < z < 00)
! \N2m
* The support of Z is (—o0, 00)

The CDF of standard normal disribution is

O(x) = F;(z) = % L e_%zz dz

The normal distribution is the most commonly-used distribution

The standard normal density function is typically written as ¢(x), and the
distribution function as ®(x)
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Standard Normal Distribution

* Z ~Normal(0, 1) if Z has PDF
7(2) = —e 2® ]1(—00 <z < )
22 =
* WhatisE[Z]?
> Hint: Show that f;o zd(z)dz = — fi)oo zP(z) dz
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Standard Normal Distribution

* Z ~Normal(0, 1) if Z has PDF

7(2) = —e 2® ]1(—00 <z < )
I729= T
* Whatis Var[Z]?

> Hint: Var[Z] = E[Z2] — E[Z]% letu = z,dv = ze" 2" dz
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Normal Distribution
« Show thatif Z ~ N(0,1),then X = y+ cZ ~ N(u,c?)

» This means that you can “standardize” any normal random variable by xa;”
» Consider P[X < x]
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Normal Distribution

* Derive the pdf of N(u, 0%)
> Take derivative of CDF: FZ(%
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Normal PDF and CDF
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Random Sample

Population Sample

Sampling
_—

Inference

* Statistics/Inference: Learning properties of the population from samples
» Sample/Data: A collection of random variables from a population
Xy = {X1, ..., X}

* Random Sample: A sample that isindependent and identically distributed (i.i.d.),
i.e, they are mutually independent with identical marginal distributions Fy
Xi,..., X, ~ idd. Fx
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Statistic and Estimation

Population Sample

Sampling
—=

Inference

* Parameter 0: A measured quantity of the population Fy  e.g. p, E[X], Var[X]

« Statistic: Any function of the sample {X, ..., X,,} eqg. % Z?:l X;

» Sampling Distribution: The distribution of a statistic

+ Estimator for a parameter : A statistic intended as a guess about 0
0=0(X,....X,)

 Estimate: Realized value of the estimator on a specific sample
O(x1 s xy) =0(X] = x1,00, X, = X)
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Some Possible Statistics

* The sample mean is a statistic:

X. =X 1
Xy =Xp(Xq,.... X)) = ;(Xl + o+ X))

Another possible, but quite naive, statistic can be:
Xl = Xl(Xl’ ,Xn) = Xl

You can define whatever statistic you want, but some are better than others

> Note that any statistic is also a random variable with its own distribution
» The distribution of a statistic is called its sampling distribution

Suppose we're interested in estimating parameter from the population Fy

o0

p=ElxI= | xfxGodx
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Sample Mean and Bias

« IfXi,..., X, ~ iid. Fxand E[X] = p, then
—= 1 1
B[X] = BLG]+ + BIXGD = — (ut oot p) = g

- The bias of an estimator 0 is defined as the difference between the expected
value of the estimator and the true value of the parameter

Bias[0, 6] = E[§] — 0

¢ If drawn from a random sample, the sample mean Yn is an unbiased estimator
for population mean y because

Bias[X,, u] = E[X,] —p=p—p=0
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Weak Law of Large Numbers (WLLN)

Weak Law of Large Numbers

Let Xi,..., X, ~ iid. Fyand Var[X] < oo, then forall ¢ > 0,

lim P

n—oo

n
=Y X —E[x]
i=1

— ln
26‘ =0 Xn:;

fl

&iEMO
1

N J

| Distance between X, and E[X]

* As N gets large, the sample mean becomes increasingly likely to approximate
E[X] to any arbitrary degree of precision

n
* This ensures the consistency of sample mean: % > X, > E[X]asn — o
i=1
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Weak Law of Large Numbers (WLLN)

+X,)/n

()(1 IR
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The Variance of Sample Mean

© Xi,..., X, ~ iid. Fy, E[X] = p, Var[X] = ¢?
— 2
* Show that Var [Xn] = %

+ showthat B[(X,) | =E[(2 X0, %) | = Z + 42
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Sample Variance

* The k-th moment of X is E[Xk]
* Plug-in Principle: % Y, X[ is often a good estimator for E[ X¥]
* Show that E [% Y Xl-z] =0+ 1P

* In principle, we can use % Z?:l X2 — 112 to estimate o2, but often y is unknown
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Sample Variance

* What about n (

%21 IXZ]_O. +/l
( Zle)] ’u2

> Sowe have that E [62] —E[IZ:’IXZ z ¢ ]_%02
* We define sample variance s? such that]E[ 2] =

o’
o 1 =
sz:nilazzn 1¢ ( X)
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Common Statistics and Sampling Distributions

* Let Xy,..., X, ~ iid. N(,u,az),and let

1l
|'M
=
<

* We can show that X,, and s® are independent, and X,, ~ N(y, 0% /n)

* We can define the t-statistic

_Xn—p

s/\n
» Studentized sample mean follows t-distribution with n — 1 degrees of freedom
» Used for test of mean of a population or two populations

~ b1
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Common Statistics and Sampling Distributions

* We can compare the sample variance to the population variance
n 2
Xi—p 2
) ~
=1\ 9

— .2
-1 &[X-X, )
—ZZE, - ~ Xn—1

o = o

> The sample variance divided by population variance follows Chi-squared
distribution
> Used for test of goodness-of-fit with respect to a population
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Common Statistics and Sampling Distributions

* We can compare the variability of two populations
. Let Xi,..., X, ~ iid. N(g,0%),and Yy, ..., Y, ~ iid. N(py,o?), then
_ 3§</0)2< . Xz ,/(n—1)
/oy Xmer/(m=1)

> The ratio of two sample variance divided by population variance follows
F-distribution

» Used for comparing the variability of two populations

~ n—-1,m-1
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Central Limit Theorem (CLT)

Central Limit Theorem
Let Xi,..., X, ~ iid. Fx, E[X] = p,and Var[X] = 0% <
. X, — 1 (Y _1p
lim o i <x = —J e 2° dz
n—>c0 [ Jo?/n ] V2r )

- ¢ CDF of standard normal distribution

v

CDF of standardized sample mean

<—ﬁ(XG” =) & N(o, 1))

* If nis large, the sampling distribution of the sample mean will tend to be
approximately normal no matter how weirdly the population under
consideration distributed

* It will allow us to rigorously quantify uncertainty when n is large
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Central Limit Theorem (CLT)

Population
distribution

Sampling
distribution
of X with
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