Multivariate Distribution, Continuous Distribution, Random Sample

Keng-Chi Chang
Department of Political Science
University of California San Diego

2023-09-21

Multivariate Random Variables

- We rarely care about a single random variable, but multiple random variables
- A random variable is a function maps from sample space S to the real line \mathbb{R}
- A multivariate random variable is a function maps from sample space S to \mathbb{R}^{n}

Joint Cumulative Distribution Function

- Joint Event $(A \cap B)$ or simply (A, B) : The event that both A and B occur
- Joint CDF: The joint CDF of (X, Y) is

$$
F_{X, Y}(x, y)=\mathbb{P}[X \leq x, Y \leq y]=\mathbb{P}[\{X \leq x\} \cap\{Y \leq y\}]
$$

Joint Density and Mass Functions

- The joint distribution of (X, Y) is continuous if $F_{X, Y}(x, y)$ is continuous in (x, y)
- For continuous multivariate random variable (X, Y), its Joint PDF is

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)
$$

- The joint distribution of (X, Y) is discrete if $F_{X, Y}(x, y)$ is discrete in (x, y)
- For discrete multivariate random variable (X, Y), its Joint PMF is

$$
\begin{equation*}
f_{X, Y}(x, y)=\mathbb{P}[X=x, Y=y] \tag{1}
\end{equation*}
$$

Marginal Density and Mass Functions

- We have the same marginalization properties for density and mass functions
- For continuous multivariate random variable (X, Y), its Marginal PDFs are

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \text { and } f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

- For discrete multivariate random variable (X, Y), its Marginal PMFs are

$$
\begin{aligned}
& f_{X}(x)=\mathbb{P}[X=x] \\
&=\sum_{y \in \mathscr{Y}} \mathbb{P}[X=x, Y=y]=\sum_{y \in \mathscr{Y}} f_{X, Y}(x, y) \\
& f_{Y}(y)=\mathbb{P}[Y=y]=\sum_{x \in \mathscr{X}} \mathbb{P}[X=x, Y=y]=\sum_{x \in \mathscr{X}} f_{X, Y}(x, y)
\end{aligned}
$$

where $\mathscr{X}=\left\{x_{1}, x_{2} \ldots\right\}$ denotes the support of X and $\mathscr{Y}=\left\{y_{1}, y_{2} \ldots\right\}$ denotes the support of Y

Conditional Distribution, Density, and Mass

- We often want to know the distribution of Y given some variable $X=x$
- E.g. How distribution of wage (Y) is different across gender (X)
- We can define the Conditional Distribution function of Y given $X=x$ as

$$
F_{Y \mid X}(y \mid x)=\mathbb{P}[Y \leq y \mid X=x]
$$

- We can also define the Conditional Density/Mass function of Y given $X=x$ as

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)} \quad \text { for all } f_{X}(x)>0
$$

- Product Rule for density/mass:

$$
f_{X, Y}(x, y)=f_{Y \mid X}(y \mid x) \cdot f_{X}(x) \quad \text { for all } f_{X}(x)>0
$$

Conditional CDF and PDF/PMF

Independence of Random Variables

- We have defined the independence of two events, now for random variables
- Random variables X and Y are independent if and only if
- Events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent; in other words

$$
\mathbb{P}[\{X \leq x\} \cap\{Y \leq y\}]=\mathbb{P}[X \leq x] \mathbb{P}[Y \leq y]=F_{X}(x) F_{Y}(y)
$$

- Independence between random variables X and Y (can be derived from above):
- Based on CDFs:

1. $F_{X \mid Y}(x \mid y)=F_{X}(x)$ for all x and y
2. $F_{Y \mid X}(y \mid x)=F_{Y}(y)$ for all x and y
3. $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all x and y

- Based on PDFs/PMFs:

1. $f_{X \mid Y}(x \mid y)=f_{X}(x)$ for all x and y
2. $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ for all x and y
3. $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all x and y

Independence and Covariance

- Show that if X and Y are independent, then
- $\operatorname{Cov}[X, Y]=0$
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

Conditional Expectation Function (CEF)

- An important concept in regression is conditional expectation

$$
\mathbb{E}\left[Y \mid X_{1}, X_{2}, X_{3}\right] \approx \beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}
$$

- E.g. $Y=$ wage, $X_{1}=$ gender, $X_{2}=$ race, $X_{3}=$ age
- The conditional expectation is the central tendency of a conditional distribution

$$
\mathbb{E}[Y \mid X=x]= \begin{cases}\int_{-\infty}^{\infty} y \cdot f_{Y \mid X}(y \mid x) d y=\int_{-\infty}^{\infty} y \cdot \frac{f_{X, Y}(x, y)}{f_{X}(x)} d y & \text { if } X \text { continuous } \\ \sum_{y \in \mathscr{Y}} y \cdot f_{Y \mid X}(y \mid x)=\sum_{y \in \mathscr{Y}} y \cdot \mathbb{P}[Y=y \mid X=x] & \text { if } X \text { discrete }\end{cases}
$$

- This tells us the average of Y given that X equals the specific value x

Conditional Expectation Function (CEF)

- When X is discrete, it is the expected value of Y within the sub-population for which $X=x$
- ex. X is gender, $\mathbb{E}[Y \mid X=x]$ is the expected value of Y for men and women, separately
- When X is continuous, it is the expected value of Y within the infinitesimally small population for which $X \approx x$

Expectation of Conditional Expectation

- Notice that $m(x)=\mathbb{E}[Y \mid X=x]$ is a function of x
- Once X is observed, $\mathbb{E}[Y \mid X=x]$ is a known fixed number
- Before X is observed, $\mathbb{E}[Y \mid X]=m(X)$ is a random variable
- We can average $m(\cdot)$ across X (take expectation): $\mathbb{E}[m(X)]=\mathbb{E}[\mathbb{E}[Y \mid X]]$
- Law of Iterated Expectations:

$$
\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[Y \mid X]\right]=\mathbb{E}[Y]
$$

- Intuition: Weighted average of $\mathbb{E}[Y \mid X=x]$, using $\mathbb{P}[X=x]$ as weights
- The average across group averages is the grand average

Law of Iterated Expectations

- Special case when X is discrete:

$$
\mathbb{E}[\mathbb{E}[Y \mid X]]=\sum_{x} \mathbb{E}[Y \mid X=x] \mathbb{P}[X=x]=\mathbb{E}[Y]
$$

- Can think of it as the product rule for conditional expectations
- Show that

$$
\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[Y \mid X]\right]=\mathbb{E}[Y]
$$

Properties of Conditional Expectation

- $\mathbb{E}[g(X) Y \mid X]=g(X) \mathbb{E}[Y \mid X]$
- $\mathbb{E}[\mathbb{E}[Y \mid X] \mid X]=\mathbb{E}[Y \mid X]$

Conditional Variance

- What about the variance of a conditional distribution?
- Similarly, we define the Conditional Variance as

$$
\begin{aligned}
\operatorname{Var}[Y \mid X=x] & =\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X=x])^{2} \mid X=x\right] \\
& =\mathbb{E}\left[Y^{2} \mid X=x\right]-\mathbb{E}[Y \mid X=x]^{2}
\end{aligned}
$$

Conditional Variance

- Law of Total Variance:

$$
\operatorname{Var}[Y]=\mathbb{E}[\operatorname{Var}[Y \mid X]]+\operatorname{Var}[\mathbb{E}[Y \mid X]]
$$

- We can decompose the variability of a random variable Y into two parts:
- Average variability "within" each values of $X: \mathbb{E}[\operatorname{Var}[Y \mid X]]$
- Variability of means "across" values of $X: \operatorname{Var}[\mathbb{E}[Y \mid X]]$

Standard Normal Distribution

- $Z \sim \operatorname{Normal}(0,1)$ if Z has PDF

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \mathbb{1}(-\infty<z<\infty)
$$

- The support of Z is $(-\infty, \infty)$
- The CDF of standard normal disribution is

$$
\Phi(x)=F_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} z^{2}} d z
$$

- The normal distribution is the most commonly-used distribution
- The standard normal density function is typically written as $\phi(x)$, and the distribution function as $\Phi(x)$

Standard Normal Distribution

- $Z \sim \operatorname{Normal}(0,1)$ if Z has PDF

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \mathbb{1}(-\infty<z<\infty)
$$

- What is $\mathbb{E}[Z]$?
- Hint: Show that $\int_{0}^{\infty} z \phi(z) d z=-\int_{-\infty}^{0} z \phi(z) d z$

Standard Normal Distribution

- $Z \sim \operatorname{Normal}(0,1)$ if Z has PDF

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \mathbb{1}(-\infty<z<\infty)
$$

- What is $\operatorname{Var}[Z]$?
- Hint: $\operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2}$, let $u=z, d v=z e^{-\frac{1}{2} z^{2}} d z$

Normal Distribution

- Show that if $Z \sim N(0,1)$, then $X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)$
- This means that you can "standardize" any normal random variable by $\frac{x-\mu}{\sigma}$
- Consider $\mathbb{P}[X \leq x]$

Normal Distribution

- Derive the pdf of $N\left(\mu, \sigma^{2}\right)$
- Take derivative of $\mathrm{CDF}: F_{Z}\left(\frac{x-\mu}{\sigma}\right)$

Normal PDF and CDF

Random Sample

Sample

- Statistics/Inference: Learning properties of the population from samples
- Sample/Data: A collection of random variables from a population

$$
\left\{X_{i}\right\}_{i=1}^{n}=\left\{X_{1}, \ldots, X_{n}\right\}
$$

- Random Sample: A sample that is independent and identically distributed (i.i.d.), i.e, they are mutually independent with identical marginal distributions F_{X}

$$
X_{1}, \ldots, X_{n} \sim \text { i.i.d. } F_{X}
$$

Statistic and Estimation

- Parameter θ : A measured quantity of the population F_{X}
- Statistic: Any function of the sample $\left\{X_{1}, \ldots, X_{n}\right\}$
e.g. $p, \mathbb{E}[X], \operatorname{Var}[X]$ e.g. $\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Sampling Distribution: The distribution of a statistic
- Estimator for a parameter θ : A statistic intended as a guess about θ

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)
$$

- Estimate: Realized value of the estimator on a specific sample

$$
\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=\hat{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

Some Possible Statistics

- The sample mean is a statistic:

$$
\bar{X}_{n}=\bar{X}_{n}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

- Another possible, but quite naive, statistic can be:

$$
\widehat{X}_{1}=\widehat{X}_{1}\left(X_{1}, \ldots, X_{n}\right)=X_{1}
$$

- You can define whatever statistic you want, but some are better than others
- Note that any statistic is also a random variable with its own distribution
- The distribution of a statistic is called its sampling distribution
- Suppose we're interested in estimating parameter from the population F_{X}

$$
\mu=\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Sample Mean and Bias

- If $X_{1}, \ldots, X_{n} \sim$ i.i.d. F_{X} and $\mathbb{E}[X]=\mu$, then

$$
\mathbb{E}\left[\bar{X}_{n}\right]=\frac{1}{n}\left(\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]\right)=\frac{1}{n}(\mu+\cdots+\mu)=\mu
$$

- The bias of an estimator $\hat{\theta}$ is defined as the difference between the expected value of the estimator and the true value of the parameter

$$
\operatorname{Bias}[\hat{\theta}, \theta]=\mathbb{E}[\hat{\theta}]-\theta
$$

- If drawn from a random sample, the sample mean \bar{X}_{n} is an unbiased estimator for population mean μ because

$$
\operatorname{Bias}\left[\bar{X}_{n}, \mu\right]=\mathbb{E}\left[\bar{X}_{n}\right]-\mu=\mu-\mu=0
$$

Weak Law of Large Numbers (WLLN)

Weak Law of Large Numbers

Let $X_{1}, \ldots, X_{n} \sim$ i.i.d. F_{X} and $\operatorname{Var}[X]<\infty$, then for all $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}[\underbrace{\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}[X]\right|}_{\text {Distance between } \bar{X}_{n} \text { and } \mathbb{E}[X]} \geq \varepsilon]=0 \quad\left(\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{p} \mathbb{E}[X]\right)
$$

- As N gets large, the sample mean becomes increasingly likely to approximate $\mathbb{E}[X]$ to any arbitrary degree of precision
- This ensures the consistency of sample mean: $\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathbb{E}[X]$ as $n \rightarrow \infty$

Weak Law of Large Numbers (WLLN)

The Variance of Sample Mean

- $X_{1}, \ldots, X_{n} \sim$ i.i.d. $F_{X}, \mathbb{E}[X]=\mu, \operatorname{Var}[X]=\sigma^{2}$
- Show that $\operatorname{Var}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n}$
- Show that $\mathbb{E}\left[\left(\bar{X}_{n}\right)^{2}\right]=\mathbb{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]=\frac{\sigma^{2}}{n}+\mu^{2}$

Sample Variance

- The k-th moment of X is $\mathbb{E}\left[X^{k}\right]$
- Plug-in Principle: $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$ is often a good estimator for $\mathbb{E}\left[X^{k}\right]$
- Show that $\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right]=\sigma^{2}+\mu^{2}$
- In principle, we can use $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\mu^{2}$ to estimate σ^{2}, but often μ is unknown

Sample Variance

- What about

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

- $\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right]=\sigma^{2}+\mu^{2}$
- $\mathbb{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]=\frac{\sigma^{2}}{n}+\mu^{2}$
- So we have that $\mathbb{E}\left[\hat{\sigma}^{2}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]=\frac{n-1}{n} \sigma^{2}$
- We define sample variance s^{2} such that $\mathbb{E}\left[s^{2}\right]_{n}=\sigma^{2}$

$$
s^{2}=\frac{n}{n-1} \hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

Common Statistics and Sampling Distributions

- Let $X_{1}, \ldots, X_{n} \sim$ i.i.d. $N\left(\mu, \sigma^{2}\right)$, and let

$$
\begin{gathered}
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\end{gathered}
$$

- We can show that \bar{X}_{n} and s^{2} are independent, and $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)$
- We can define the t-statistic

$$
t=\frac{\bar{X}_{n}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

- Studentized sample mean follows \mathbf{t}-distribution with $n-1$ degrees of freedom
- Used for test of mean of a population or two populations

Common Statistics and Sampling Distributions

- We can compare the sample variance to the population variance

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi_{n}^{2} \\
\frac{(n-1) s^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}_{n}}{\sigma}\right)^{2} \sim \chi_{n-1}^{2}
\end{gathered}
$$

- The sample variance divided by population variance follows Chi-squared distribution
- Used for test of goodness-of-fit with respect to a population

Common Statistics and Sampling Distributions

- We can compare the variability of two populations
- Let $X_{1}, \ldots, X_{n} \sim$ i.i.d. $N\left(\mu, \sigma^{2}\right)$, and $Y_{1}, \ldots, Y_{m} \sim$ i.i.d. $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, then

$$
F=\frac{s_{X}^{2} / \sigma_{X}^{2}}{s_{Y}^{2} / \sigma_{Y}^{2}}=\frac{\chi_{n-1}^{2} /(n-1)}{\chi_{m-1}^{2} /(m-1)} \sim F_{n-1, m-1}
$$

- The ratio of two sample variance divided by population variance follows F-distribution
- Used for comparing the variability of two populations

Central Limit Theorem (CLT)

Central Limit Theorem

Let $X_{1}, \ldots, X_{n} \sim$ i.i.d. $F_{X}, \mathbb{E}[X]=\mu$, and $\operatorname{Var}[X]=\sigma^{2}<\infty$

$$
\lim _{n \rightarrow \infty} \underbrace{\mathbb{P}\left[\frac{\bar{X}_{n}-\mu}{\sqrt{\sigma^{2} / n}} \leq x\right]}_{\text {CDF of standardized sample mean }}=\underbrace{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} z^{2}} d z}_{\text {CDF of standard normal distribution }}
$$

$$
\left(\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \stackrel{d}{\rightarrow} N(0,1)\right)
$$

- If n is large, the sampling distribution of the sample mean will tend to be approximately normal no matter how weirdly the population under consideration distributed
- It will allow us to rigorously quantify uncertainty when n is large

Central Limit Theorem (CLT)

Population distribution			
Sampling distribution of \bar{X} with $n=5$			
Sampling distribution of \bar{X} with $n=30$			

