Probability, Random Variables, Distributions

Keng-Chi Chang
Department of Political Science
University of California San Diego

2023-09-19

Building Blocks

- Outcome: A specific result
- One coin flip: Outcome is either H or T
- Two coins flipped in sequence: HT is an outcome
- Sample space: The set of all possible outcomes, often denoted S
- One coin flip: $S_{1}=\{H, T\}$
- Two coins flipped in sequence: $S_{2}=\{H H, H T, T H, T T\}$
- Events: Subset of possible outcomes, a subset of S (can be S itself).
- $A_{1}=\{H\} \subseteq S_{1} ; A_{2}=\{H H, H T\} \subseteq S_{2}$
- Probability: Chance of an event within the sample space
- A function that maps events to $[0,1]$
- Will give a more formal definition

Different Sizes of Sets

- Roughly, intuition tells us that

$$
\text { Probability }=\frac{\text { Size of Event }}{\text { Size of Sample Space }}=\frac{\text { \# Outcomes }}{\text { \# All possible outcomes }}
$$

- Sample space can be of different sizes, leading to different treatments of probability
- Finite:
- Ex. Number of seats in US House, $S=\{0,1, \ldots, 435\}$
- Infinite but Countable:
- Ex. Potential number of wars, $S=\{0,1,2,3, \ldots\}$
- Infinite and Uncountable:
- Ex. Time duration of cabinets, $S=[0, \infty)$
- You cannot "count" the number of outcomes in this case

Set Operations

Given two sets A and B, we can do the following operations (draw Venn diagrams):

1. Union: The set containing all of the elements in A or B

$$
A \cup B=\{\omega: \omega \in A \text { or } \omega \in B\}
$$

2. Intersection: The set containing all of the elements in both A and B

$$
A \cap B=\{\omega: \omega \in A \text { and } \omega \in B\}
$$

3. Complement: The set containing all of the elements not in A

$$
A^{c}=\{\omega: \omega \notin A\}
$$

Other useful concepts:

- Set Difference: $B \backslash A=\{\omega: \omega \in B$ and $\omega \notin A\}=B \cap A^{c}$
- Disjoint Sets: A and B are disjoint if $A \cap B=\varnothing$
- Indicator Function: $\mathbb{1}(\omega \in A)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { if } \omega \notin A\end{cases}$

Probability Function

Definition

A function \mathbb{P} which assigns events to \mathbb{R} is called a probability function if it satisfies the following Axioms of Probability (Kolmogorov 1933)

1. For any event $A, \mathbb{P}[A] \geq 0$ (non-negative)
2. $\mathbb{P}[S]=1$
(sum up to 1, normalization)
3. If A_{1}, A_{2}, \ldots are mutually disjoint, then (disjoint \Rightarrow sum)

$$
\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_{i}\right]=\sum_{i=1}^{\infty} \mathbb{P}\left[A_{i}\right]
$$

- Axiom 3 imposes that probabilities are additive on disjoint events

$$
\text { If } A \cap B=\varnothing \text {, then } \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)
$$

- Ex: $S=\{H, T\}, \mathbb{P}[H]=0.6, \mathbb{P}[T]=0.6$ is not a valid probability function

Probability Properties

For events A and B, given the three axioms, we can show the following properties:

1. $\mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A]$
2. $\mathbb{P}[\varnothing]=0$
3. $\mathbb{P}[A] \leq 1$
4. Monotone Probability Inequality: If $A \subseteq B$, then $\mathbb{P}[A] \leq \mathbb{P}[B]$
5. Inclusion-Exclusion Principle:

$$
\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]
$$

6. Boole's Inequality:

$$
\mathbb{P}[A \cup B] \leq \mathbb{P}[A]+\mathbb{P}[B]
$$

7. Bonferroni's Inequality:

$$
\mathbb{P}[A \cap B] \geq \mathbb{P}[A]+\mathbb{P}[B]-1
$$

Joint Probability and Marginalization

- Joint Event $(A \cap B)$ or simply (A, B) : The event that both A and B occur
- Joint Probability: Probability that joint event (A, B) occurs, denoted

$$
\mathbb{P}[A, B]
$$

- Example: Flip a coin twice, $\mathbb{P}[H]=0.6, A$: 1 st coin, B : 2 nd coin
- Marginalization: We can recover the (marginal) probability $\mathbb{P}[X]$ from joint probability $\mathbb{P}[X, Y]$ by summing over every possible values of Y :

$$
\mathbb{P}[X]=\sum_{y} \mathbb{P}[X, Y=y]
$$

Conditional Probability

- Conditional Probability: The conditional probability $\mathbb{P}[A \mid B]$ is the probability of A given that B has occurred

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A, B]}{\mathbb{P}[B]}
$$

- Allows for the inclusion of other information B into the calculation of probability of A
- Can think of B as the new sample space, and re-normalize all probabilities by $\mathbb{P}[B]$
- Conditional probability is still a valid probability function (satisfies three axioms)
- This implies the Product Rule of probability: joint = conditional * marginal

$$
\mathbb{P}[A, B]=\mathbb{P}[A \mid B] \mathbb{P}[B]
$$

or more generally (no particular order is needed),

$$
\begin{aligned}
\mathbb{P}[A, B, C, D, \ldots] & =\mathbb{P}[A] \mathbb{P}[B \mid A] \mathbb{P}[C \mid A, B] \mathbb{P}[D \mid A, B, C] \cdots \\
& =\mathbb{P}[D] \mathbb{P}[C \mid D] \mathbb{P}[B \mid C, D] \mathbb{P}[A \mid B, C, D] \cdots
\end{aligned}
$$

Independence

- Independence: The occurrence or nonoccurrence of either events A and B have no effect on the occurrence or nonoccurrence of the other; they are unrelated.
- The following are equivalent definitions for independence:

1. $\mathbb{P}[A \mid B]=\mathbb{P}[A]$
2. $\mathbb{P}[B \mid A]=\mathbb{P}[B]$
3. $\mathbb{P}[A, B]=\mathbb{P}[A] \mathbb{P}[B]$

- Conditioning on the event B does not modify the evaluation of probability of A
- Independent events provide no information to each other
- So conditional probability = unconditional probability

Conditional Independence

- Conditional Independence: If A and B are independent once you know the occurrence of a third event C, then we say that A and B are conditionally independent given C.
- The following are equivalent definitions for conditional independence:

1. $\mathbb{P}[A \mid B, C]=\mathbb{P}[A \mid C]$
2. $\mathbb{P}[B \mid A, C]=\mathbb{P}[B \mid C]$
3. $\mathbb{P}[A, B \mid C]=\mathbb{P}[A \mid C] \mathbb{P}[B \mid C]$

- This is simply the definitions for independence but adding " $[\cdot \mid C]$ "
- This is a somewhat weaker condition than independence since we only need the above equality to hold on some subset of sample space involving event C
- But independence does not imply conditional independence, or vice versa
- This is one of the foundations of causal inference: $\mathbb{P}[Y \mid D, X]=\mathbb{P}[Y \mid X]$
- Given covariate X, treatment assignment D is independent of potential outcome Y

Probability: Example

- A box contains two coins: a regular coin and one fake two-headed coin ($\mathbb{P}[H]=1$).
- I choose a coin at random $\mathbb{P}[C]=p$ and toss it twice. Define the following events:
- $A=$ First coin toss results in an H
- $B=$ Second coin toss results in an H
- $C=$ Regular coin has been selected
- Find the following quantities:
- $\mathbb{P}[A \mid C]$
- $\mathbb{P}[B \mid C]$
- $\mathbb{P}[A, B \mid C]$
- $\mathbb{P}[A]$
- $\mathbb{P}[B]$
- $\mathbb{P}[A, B]$
- A and B are conditional independent given C, but A and B are not independent

Bayes Rule

- From the product rule we know that

$$
\mathbb{P}[A, B]=\mathbb{P}[B \mid A] \mathbb{P}[A]=\mathbb{P}[A \mid B] \mathbb{P}[B]
$$

- From marginalization we also know that

$$
\begin{aligned}
\mathbb{P}[B] & =\mathbb{P}[A, B]+\mathbb{P}\left[A^{c}, B\right] \\
& =\mathbb{P}[B \mid A] \mathbb{P}[A]+\mathbb{P}\left[B \mid A^{c}\right] \mathbb{P}\left[A^{c}\right]
\end{aligned}
$$

- So we can express $\mathbb{P}[A \mid B]$ as a function of $\mathbb{P}[B \mid A]$ (and vise versa):

$$
\begin{aligned}
\mathbb{P}[A \mid B] & =\frac{\mathbb{P}[A, B]}{\mathbb{P}[B]}=\frac{\mathbb{P}[B \mid A] \mathbb{P}[A]}{\mathbb{P}[B]} \\
& =\frac{\mathbb{P}[B \mid A] \mathbb{P}[A]}{\mathbb{P}[B \mid A] \mathbb{P}[A]+\mathbb{P}\left[B \mid A^{c}\right] \mathbb{P}\left[A^{c}\right]}
\end{aligned}
$$

Random Variables

- Random Variable: A random variable is a real-valued outcome; a function from the sample space S to real numbers \mathbb{R}

- Example: Coin flip, we often use

$$
X= \begin{cases}1 & \text { if } H \\ 0 & \text { if } T\end{cases}
$$

Random Variables

- X denote random variable
- $X=x$ denote X has a particular realization x
- Support of X : The set that random variable X is defined, denoted \mathscr{X}
- Discrete Random Variable: Sample space / support of X is finite or countable
- Continuous Random Variable: Sample space / support of X is uncountable

Distribution Function

- We can then associate random variables with probability!
- Cumulative Distribution Function (CDF) of a random variable X is the probability that X is less than or equal to some value x :

$$
F_{X}(x)=\mathbb{P}[X \leq x]
$$

- A CDF $F(x)$ must satisfy the following conditions:

1. $F(x)$ is non-decreasing in x
2. $\lim _{x \rightarrow-\infty} F(x)=0$
3. $\lim _{x \rightarrow \infty} F(x)=1$
4. $F(x)$ is right-continuous (right limit must exist)
(because we're including more outcomes)
(probability of empty set)
(probability of whole sample space) (technical)

- Continuous random variable \Leftrightarrow CDF is a continuous function
- Discrete random variable \Leftrightarrow CDF is a step function

Density and Mass Functions

- For continuous random variable, its Probability Density Function (PDF) is

$$
f(x)=F_{X}^{\prime}(x)=\frac{d}{d x} F_{X}(x)
$$

- Fundamental Theorem of Calculus says $\mathbb{P}[a \leq X \leq b]=\int_{a}^{b} f(x) d x=F(b)-F(a)$
- For discrete random variable, its Probability Mass Function (PMF) is

$$
f(x)=\mathbb{P}[X=x] \quad\left[=F_{X}(x)-F_{X}(x-\varepsilon)\right]
$$

- Since discrete CDF is a step function, it is not differentiable everywhere
- But we can still calculate that $\mathbb{P}[a \leq X \leq b]=\sum_{x \in\{a, \cdots, b\}} f(x)=\sum_{x \in\{a, \cdots, b\}} \mathbb{P}[X=x]$
- Either way, PDF and PMF must satisfy the following conditions:

1. $f(x) \geq 0$ for all x
(positivity)
2. $\int_{-\infty}^{\infty} f(x) d x=1$ (PDF) or $\sum_{x} f(x)=1$ (PMF)
(sums to 1)

Example: Bernoulli Random Variable

- $X \sim \operatorname{Bernoulli}(p)$ if X has PMF

$$
\begin{aligned}
& \mathbb{P}[X=1]=p \\
& \mathbb{P}[X=0]=1-p
\end{aligned}
$$

- The support of X is $\{0,1\}$
- Note that we can also write the PMF as

$$
\mathbb{P}[X=x \mid p]=p^{x}(1-p)^{1-x} \mathbb{1}(x \in\{0,1\})
$$

- What is the CDF?

Example: Uniform Distribution

- $X \sim$ Uniform $[0,1]$ if X has PDF

$$
f(x)= \begin{cases}1 & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- The support of X is $[0,1]$
- We can also write the PDF as

$$
f(x)=\mathbb{1}(x \in[0,1])
$$

- What is the CDF?

Expectation

- We often want to summarize characteristics of a distribution of a random variable
- What about we take the average of a random variable, weighted by probability?
- Expectation: The expected value of a random variable X is

$$
\mathbb{E}[X]= \begin{cases}\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x d F(x) & \text { if } X \text { continuous } \\ \sum_{x \in \mathscr{X}} x f(x)=\sum_{x \in \mathscr{X}} x \mathbb{P}[X=x] & \text { if } X \text { discrete }\end{cases}
$$

- Expectation tells us about the central tendency of a distribution
- More generally, we can find the expectation of any function of X

$$
\mathbb{E}[g(X)]= \begin{cases}\int_{-\infty}^{\infty} g(x) f(x) d x=\int_{-\infty}^{\infty} g(x) d F(x) & \text { if } X \text { continuous } \\ \sum_{x \in \mathscr{X}} g(x) f(x)=\sum_{x \in \mathscr{X}} g(x) \mathbb{P}[X=x] & \text { if } X \text { discrete }\end{cases}
$$

Example

- Recall the Indicator Function: $\mathbb{1}(\omega \in A)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { if } \omega \notin A\end{cases}$
- Show that $\mathbb{E}[\mathbb{1}(X \in A)]=\mathbb{P}[A]$

Example: Bernoulli Random Variable

- $X \sim \operatorname{Bernoulli}(p)$ if X has PMF

$$
\begin{aligned}
& \mathbb{P}[X=1]=p \\
& \mathbb{P}[X=0]=1-p
\end{aligned}
$$

- What is $\mathbb{E}[X]$?
- What is $\mathbb{E}\left[X^{2}\right]$?

Example: Uniform Distribution

- $X \sim$ Uniform $[0,1]$ if X has PDF

$$
f(x)= \begin{cases}1 & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\mathbb{E}[X]$?
- What is $\mathbb{E}\left[X^{2}\right]$?

Properties of Expected Values

1. Expectation of a constant is a constant

$$
\mathbb{E}[c]=c
$$

2. Constants come out

$$
\mathbb{E}[c g(Y)]=c \mathbb{E}[g(Y)]
$$

3. Expectation is linear: For any random variables Y_{1}, \ldots, Y_{n} (either dependent or independent),

$$
\mathbb{E}\left[g\left(Y_{1}\right)+\cdots+g\left(Y_{n}\right)\right]=\mathbb{E}\left[g\left(Y_{1}\right)\right]+\cdots+\mathbb{E}\left[g\left(Y_{n}\right)\right]
$$

4. If X and Y are independent, then the product is easy

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

5. Expected Value of Expected Values:

$$
\mathbb{E}[\mathbb{E}[Y]]=\mathbb{E}[Y]
$$

Variance and Covariance

- How do we measure the distance of a random variable X from its mean?

$$
X-\mathbb{E}[X]
$$

- But we would like the "distance" to stay positive...
- Absolute value \rightsquigarrow Hard to deal with; not differentiable
- Square \rightsquigarrow Smoother, differentiable
- Variance tells us about the spread of the distribution around the center

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- Covariance measures the co-movement of two random variables around their own centers

$$
\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

- Normalize: $\operatorname{SD}[X]=\sqrt{\operatorname{Var}[X]}, \operatorname{Corr}[X, Y]=\operatorname{Cov}[X, Y] / \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$

Properties of Variance and Covariance

1. $\operatorname{Var}[c]=0$
2. $\operatorname{Var}[a+b X]=b^{2} \operatorname{Var}[X]$
3. $\operatorname{Cov}[a+b X, c+d Y]=b d \operatorname{Cov}[X, Y]$
4. $\operatorname{Cov}[X+Z, Y+W]=\operatorname{Cov}[X, Y]+\operatorname{Cov}[X, W]+\operatorname{Cov}[Z, Y]+\operatorname{Cov}[Z, W]$
5. $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$

Example: Bernoulli Random Variable

- $X \sim \operatorname{Bernoulli}(p)$ if X has PMF

$$
\begin{aligned}
& \mathbb{P}[X=1]=p \\
& \mathbb{P}[X=0]=1-p
\end{aligned}
$$

- What is $\operatorname{Var}[X]$?

Example: Uniform Distribution

- $X \sim \operatorname{Uniform}[0,1]$ if X has PDF

$$
f(x)= \begin{cases}1 & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $\operatorname{Var}[X]$?

Binomial Distribution

- Suppose we repeat the Bernoulli trial for n times
- Each trial i follows the same distribution

$$
X_{i} \sim \operatorname{Bernoulli}(p), \quad \text { so } \mathbb{P}\left[X_{i}=1\right]=p \text { for all } i
$$

- Each trial also independent of each other

$$
\mathbb{P}\left[X_{i}=x_{i}, X_{j}=x_{j}\right]=\mathbb{P}\left[X_{i}=x_{i}\right] \mathbb{P}\left[X_{j}=x_{j}\right]
$$

- We want to count the number of successes, denoted by $Y=X_{1}+\cdots+X_{n}$
- One specific way to obtain y number of success is:

$$
\begin{aligned}
& \mathbb{P}\left[X_{1}=1, X_{2}=0, X_{3}=0, \ldots, X_{n}=0\right]=\mathbb{P}\left[X_{1}=1\right] \mathbb{P}\left[X_{2}=0\right] \ldots \mathbb{P}\left[X_{n}=0\right] \\
& =\underbrace{\mathbb{P}\left[X_{1}=1\right] \mathbb{P}\left[X_{3}=1\right] \ldots}_{y \text { terms }} \times \underbrace{\mathbb{P}\left[X_{2}=0\right] \ldots \mathbb{P}\left[X_{n}=0\right]}_{n-y \text { terms }} \\
& =\underbrace{p p \cdots p}_{y \text { terms }} \times \underbrace{(1-p) \cdots(1-p)}_{n-y \text { terms }}=p^{y}(1-p)^{n-y}
\end{aligned}
$$

Binomial Distribution

- This is just one instance of y number of successes
- There are $\binom{n}{y}=\frac{n!}{y!(n-y)!}$ instances that we can get y successes
- So we have the PMF of the Binomial Distribution

$$
\mathbb{P}[Y=y \mid n, p]=\binom{n}{y} p^{y}(1-p)^{n-y_{1}}(y \in\{0,1, \ldots, n\})
$$

- The support of Y is $\{0,1, \ldots, n\}$
- This example shows that:

$$
\text { If } X_{i} \sim \text { i.i.d. } \operatorname{Bernoulli}(p) \Rightarrow X_{1}+\cdots+X_{n}=Y \sim \operatorname{Binomial}(n, p)
$$

- Note that the i.i.d. (independent and identically distributed) assumption is crucial in our derivation

Binomial PMF and CDF

Binomial Distribution

- $X_{i} \sim \operatorname{iid} \operatorname{Bernoulli}(p), X_{1}+\cdots+X_{n}=Y \sim \operatorname{Binomial}(n, p)$
- What is $\mathbb{E}[Y]$?
- What is $\operatorname{Var}[Y]$?

Poisson Distribution

- Poisson distribution is often used to model rare event counts
- Counts of the number of events that occur during some unit of time
- The event would occur with a fixed "arrival rate" $\lambda>0$
- ex. Number of wars in a year (assuming "arrival rate" is fixed)
- $X \sim \operatorname{Poisson}(\lambda)$ if X has PMF

$$
\mathbb{P}[X=x \mid \lambda]=\frac{e^{-\lambda} \lambda^{x}}{x!} \mathbb{1}(x \in\{0,1,2, \ldots\})
$$

- The support of X is $\{0,1,2, \ldots\}$

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$ if X has PMF

$$
\mathbb{P}[X=x \mid \lambda]=\frac{e^{-\lambda} \lambda^{x}}{x!} \mathbb{1}(x \in\{0,1,2, \ldots\})
$$

- Is this a legitimate PMF? (Does it follow the two conditions?)
- Note the Taylor expansion of e^{x} around $x=0$:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Poisson PMF and CDF

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$ if X has PMF

$$
\mathbb{P}[X=x \mid \lambda]=\frac{e^{-\lambda} \lambda^{x}}{x!} \mathbb{1}(x \in\{0,1,2, \ldots\})
$$

- What is $\mathbb{E}[X]$?
- Hint: Use the fact that PMF sums to 1: $\quad \sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!}=1$

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$ if X has PMF

$$
\mathbb{P}[X=x \mid \lambda]=\frac{e^{-\lambda} \lambda^{x}}{x!} \mathbb{(}(x \in\{0,1,2, \ldots\})
$$

- Show that $\mathbb{E}\left[X^{2}\right]=\lambda(\lambda+1)$
- Hint: Use the fact that PMF sums to 1: $\quad \sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!}=1$
- Show that $\operatorname{Var}[X]=\lambda$

