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Building Blocks

• Outcome: A specific result
▶ One coin flip: Outcome is either𝐻 or 𝑇
▶ Two coins flipped in sequence: 𝐻𝑇 is an outcome

• Sample space: The set of all possible outcomes, often denoted 𝑆
▶ One coin flip: 𝑆1 = {𝐻 , 𝑇 }
▶ Two coins flipped in sequence: 𝑆2 = {𝐻𝐻, 𝐻𝑇 , 𝑇𝐻 , 𝑇 𝑇 }

• Events: Subset of possible outcomes, a subset of 𝑆 (can be 𝑆 itself ).
▶ 𝐴1 = {𝐻} ⊆ 𝑆1;𝐴2 = {𝐻𝐻, 𝐻𝑇 } ⊆ 𝑆2

• Probability: Chance of an event within the sample space
▶ A function that maps events to [0, 1]
▶ Will give a more formal definition
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Different Sizes of Sets

• Roughly, intuition tells us that

Probability = Size of Event
Size of Sample Space

= # Outcomes
# All possible outcomes

• Sample space can be of different sizes, leading to different treatments of
probability

• Finite:
▶ Ex. Number of seats in US House, 𝑆 = {0, 1, … , 435}

• Infinite but Countable:
▶ Ex. Potential number of wars, 𝑆 = {0, 1, 2, 3, …}

• Infinite and Uncountable:
▶ Ex. Time duration of cabinets, 𝑆 = [0,∞)
▶ You cannot “count” the number of outcomes in this case
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Set Operations
Given two sets𝐴 and 𝐵, we can do the following operations (draw Venn diagrams):
1. Union: The set containing all of the elements in𝐴 or 𝐵

𝐴 ∪ 𝐵 = {𝜔 ∶ 𝜔 ∈ 𝐴 or 𝜔 ∈ 𝐵}
2. Intersection: The set containing all of the elements in both𝐴 and 𝐵

𝐴 ∩ 𝐵 = {𝜔 ∶ 𝜔 ∈ 𝐴 and 𝜔 ∈ 𝐵}
3. Complement: The set containing all of the elements not in𝐴

𝐴𝑐 = {𝜔 ∶ 𝜔 ∉ 𝐴}
Other useful concepts:
• Set Difference: 𝐵 ⧵ 𝐴 = {𝜔 ∶ 𝜔 ∈ 𝐵 and 𝜔 ∉ 𝐴} = 𝐵 ∩ 𝐴𝑐
• Disjoint Sets: 𝐴 and 𝐵 are disjoint if𝐴 ∩ 𝐵 = ∅
• Indicator Function: 𝟙(𝜔 ∈ 𝐴) = { 1 if 𝜔 ∈ 𝐴

0 if 𝜔 ∉ 𝐴
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Probability Function

Definition
A function ℙwhich assigns events to ℝ is called a probability function if it satisfies
the following Axioms of Probability (Kolmogorov 1933)

1. For any event𝐴, ℙ[𝐴] ≥ 0 (non-negative)

2. ℙ[𝑆] = 1 (sum up to 1, normalization)

3. If𝐴1, 𝐴2, … are mutually disjoint, then (disjoint⇒ sum)

ℙ [
∞
⋃
𝑖=1

𝐴𝑖] =
∞
∑
𝑖=1

ℙ[𝐴𝑖]

• Axiom 3 imposes that probabilities are additive on disjoint events

If𝐴 ∩ 𝐵 = ∅, then ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵)
• Ex: 𝑆 = {𝐻 , 𝑇 }, ℙ[𝐻] = 0.6, ℙ[𝑇 ] = 0.6 is not a valid probability function
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Probability Properties

For events𝐴 and 𝐵, given the three axioms, we can show the following properties:

1. ℙ[𝐴𝑐] = 1 − ℙ[𝐴]
2. ℙ[∅] = 0
3. ℙ[𝐴] ≤ 1
4. Monotone Probability Inequality: If𝐴 ⊆ 𝐵, then ℙ[𝐴] ≤ ℙ[𝐵]
5. Inclusion-Exclusion Principle:

ℙ[𝐴 ∪ 𝐵] = ℙ[𝐴] + ℙ[𝐵] − ℙ[𝐴 ∩ 𝐵]
6. Boole’s Inequality:

ℙ[𝐴 ∪ 𝐵] ≤ ℙ[𝐴] + ℙ[𝐵]
7. Bonferroni’s Inequality:

ℙ[𝐴 ∩ 𝐵] ≥ ℙ[𝐴] + ℙ[𝐵] − 1
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Joint Probability andMarginalization
• Joint Event (𝐴 ∩ 𝐵) or simply (𝐴, 𝐵): The event that both𝐴 and 𝐵 occur
• Joint Probability: Probability that joint event (𝐴, 𝐵) occurs, denoted

ℙ[𝐴, 𝐵]
• Example: Flip a coin twice, ℙ[𝐻] = 0.6,𝐴: 1st coin, 𝐵: 2nd coin

• Marginalization: We can recover the (marginal) probability ℙ[𝑋] from joint
probability ℙ[𝑋 , 𝑌 ] by summing over every possible values of 𝑌 :

ℙ[𝑋] = ∑
𝑦

ℙ[𝑋 , 𝑌 = 𝑦]
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Conditional Probability
• Conditional Probability: The conditional probability ℙ[𝐴 | 𝐵] is the probability

of𝐴 given that 𝐵 has occurred

ℙ[𝐴 | 𝐵] = ℙ[𝐴, 𝐵]
ℙ[𝐵]

▶ Allows for the inclusion of other information 𝐵 into the calculation of probability of
𝐴

▶ Can think of 𝐵 as the new sample space, and re-normalize all probabilities by ℙ[𝐵]
▶ Conditional probability is still a valid probability function (satisfies three axioms)
▶ This implies the Product Rule of probability: joint = conditional * marginal

ℙ[𝐴, 𝐵] = ℙ[𝐴 | 𝐵] ℙ[𝐵]
or more generally (no particular order is needed),

ℙ[𝐴, 𝐵, 𝐶, 𝐷,…] = ℙ[𝐴] ℙ[𝐵 | 𝐴] ℙ[𝐶 | 𝐴, 𝐵] ℙ[𝐷 | 𝐴, 𝐵, 𝐶]⋯
= ℙ[𝐷] ℙ[𝐶 | 𝐷] ℙ[𝐵 | 𝐶, 𝐷] ℙ[𝐴 | 𝐵, 𝐶, 𝐷]⋯
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Independence

• Independence: The occurrence or nonoccurrence of either events𝐴 and 𝐵 have
no effect on the occurrence or nonoccurrence of the other; they are unrelated.

• The following are equivalent definitions for independence:
1. ℙ[𝐴 | 𝐵] = ℙ[𝐴]
2. ℙ[𝐵 | 𝐴] = ℙ[𝐵]
3. ℙ[𝐴, 𝐵] = ℙ[𝐴] ℙ[𝐵]

• Conditioning on the event 𝐵 does not modify the evaluation of probability of𝐴
• Independent events provide no information to each other
• So conditional probability = unconditional probability
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Conditional Independence

• Conditional Independence: If𝐴 and 𝐵 are independent once you know the
occurrence of a third event 𝐶 , then we say that𝐴 and 𝐵 are conditionally
independent given 𝐶 .

• The following are equivalent definitions for conditional independence:
1. ℙ[𝐴 | 𝐵, 𝐶] = ℙ[𝐴 | 𝐶]
2. ℙ[𝐵 | 𝐴, 𝐶] = ℙ[𝐵 | 𝐶]
3. ℙ[𝐴, 𝐵 | 𝐶] = ℙ[𝐴 | 𝐶] ℙ[𝐵 | 𝐶]

• This is simply the definitions for independence but adding “[⋅ | 𝐶]”
• This is a somewhat weaker condition than independence since we only need the

above equality to hold on some subset of sample space involving event 𝐶
▶ But independence does not imply conditional independence, or vice versa

• This is one of the foundations of causal inference: ℙ[𝑌 | 𝐷, 𝑋] = ℙ[𝑌 | 𝑋]
▶ Given covariate 𝑋 , treatment assignment𝐷 is independent of potential outcome 𝑌
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Probability: Example
• A box contains two coins: a regular coin and one fake two-headed coin

(ℙ[𝐻] = 1).
• I choose a coin at random ℙ[𝐶] = 𝑝 and toss it twice. Define the following

events:
▶ 𝐴 = First coin toss results in an𝐻
▶ 𝐵 = Second coin toss results in an𝐻
▶ 𝐶 = Regular coin has been selected

• Find the following quantities:
▶ ℙ[𝐴 | 𝐶]
▶ ℙ[𝐵 | 𝐶]
▶ ℙ[𝐴, 𝐵 | 𝐶]
▶ ℙ[𝐴]
▶ ℙ[𝐵]
▶ ℙ[𝐴, 𝐵]

• 𝐴 and 𝐵 are conditional independent given 𝐶 , but𝐴 and 𝐵 are not independent
11 / 36



Bayes Rule

• From the product rulewe know that

ℙ[𝐴, 𝐵] = ℙ[𝐵 | 𝐴] ℙ[𝐴] = ℙ[𝐴 | 𝐵] ℙ[𝐵]
• Frommarginalizationwe also know that

ℙ[𝐵] = ℙ[𝐴, 𝐵] + ℙ[𝐴𝑐 , 𝐵]
= ℙ[𝐵 | 𝐴] ℙ[𝐴] + ℙ[𝐵 | 𝐴𝑐] ℙ[𝐴𝑐]

• So we can express ℙ[𝐴 | 𝐵] as a function of ℙ[𝐵 | 𝐴] (and vise versa):

ℙ[𝐴 | 𝐵] = ℙ[𝐴, 𝐵]
ℙ[𝐵] = ℙ[𝐵 | 𝐴] ℙ[𝐴]

ℙ[𝐵]
= ℙ[𝐵 | 𝐴] ℙ[𝐴]

ℙ[𝐵 | 𝐴] ℙ[𝐴] + ℙ[𝐵 | 𝐴𝑐] ℙ[𝐴𝑐]
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Random Variables

• RandomVariable: A random variable is a real-valued outcome; a function from
the sample space 𝑆 to real numbers ℝ

CHAPTER 2. RANDOM VARIABLES 23

10
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R

Figure 2.1: A Random Variable is a Function

Definition 2.2 The set X is discrete if it has a finite or countably infinite number of elements.

Most discrete sets in applications are non-negative integers. For example, in a coin flip X = {0,1} and
in a roll of a die X = {1,2,3,4,5,6}.

Definition 2.3 If there is a discrete set X such that P [X 2X ] = 1 then X is a discrete random variable.
The smallest set X with this property is the support of X .

The support is the set of values which receive positive probability of occurance. We sometimes write
the support as X = {ø1,ø2, ...,øn}, X = {ø1,ø2, ...} or X = {ø0,ø1,ø2, ...} when we need an explicit descrip-
tion of the support. We call the values ø j the support points.

The following definition is useful.

Definition 2.4 The probability mass function of a random variable is º(x) = P [X = x], the probability
that X equals the value x. When evaluated at the support points ø j we write º j =º(ø j ).

Take, for example, a coin flip with probability p of heads. The support is X = {0,1} = {ø0,ø1}. The
probability mass function takes the values º0 = 1°p and º1 = p.

Take a fair die. The support is X = {1,2,3,4,5,6} = {ø j : j = 1, ...,6} with probability mass function
º j = 1/6 for j = 1, ...,6.

An example of a countably infinite discrete random variable is

P [X = k] = e°1

k !
, k = 0,1,2, .... (2.1)

• Example: Coin flip, we often use

𝑋 = { 1 if𝐻
0 if 𝑇
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Random Variables

• 𝑋 denote random variable
• 𝑋 = 𝑥 denote 𝑋 has a particular realization 𝑥
• Support of 𝑋 : The set that random variable 𝑋 is defined, denoted𝒳
• Discrete Random Variable: Sample space / support of 𝑋 is finite or countable
• Continuous Random Variable: Sample space / support of 𝑋 is uncountable

14 / 36



Distribution Function

• We can then associate random variables with probability!
• Cumulative Distribution Function (CDF) of a random variable 𝑋 is the

probability that 𝑋 is less than or equal to some value 𝑥 :
𝐹𝑋 (𝑥) = ℙ[𝑋 ≤ 𝑥]

• A CDF 𝐹(𝑥)must satisfy the following conditions:
1. 𝐹(𝑥) is non-decreasing in 𝑥 (because we’re including more outcomes)
2. lim𝑥→−∞ 𝐹(𝑥) = 0 (probability of empty set)

3. lim𝑥→∞ 𝐹(𝑥) = 1 (probability of whole sample space)

4. 𝐹(𝑥) is right-continuous (right limit must exist) (technical)

• Continuous random variable⇔ CDF is a continuous function
• Discrete random variable⇔ CDF is a step function
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Density andMass Functions

• For continuous random variable, its Probability Density Function (PDF) is

𝑓 (𝑥) = 𝐹 ′𝑋 (𝑥) = 𝑑
𝑑𝑥 𝐹𝑋 (𝑥)

▶ Fundamental Theorem of Calculus says ℙ[𝑎 ≤ 𝑋 ≤ 𝑏] = ∫𝑏𝑎 𝑓 (𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
• For discrete random variable, its Probability Mass Function (PMF) is

𝑓 (𝑥) = ℙ[𝑋 = 𝑥] [= 𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑥 − 𝜀)]
▶ Since discrete CDF is a step function, it is not differentiable everywhere
▶ But we can still calculate that ℙ[𝑎 ≤ 𝑋 ≤ 𝑏] = ∑

𝑥∈{𝑎,⋯,𝑏}
𝑓 (𝑥) = ∑

𝑥∈{𝑎,⋯,𝑏}
ℙ[𝑋 = 𝑥]

• Either way, PDF and PMF must satisfy the following conditions:
1. 𝑓 (𝑥) ≥ 0 for all 𝑥 (positivity)

2. ∫
∞

−∞
𝑓 (𝑥) 𝑑𝑥 = 1 (PDF) or ∑

𝑥
𝑓 (𝑥) = 1 (PMF) (sums to 1)
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Example: Bernoulli Random Variable
• 𝑋 ∼ Bernoulli(𝑝) if 𝑋 has PMF

ℙ[𝑋 = 1] = 𝑝
ℙ[𝑋 = 0] = 1 − 𝑝

• The support of 𝑋 is {0, 1}
• Note that we can also write the PMF as

ℙ[𝑋 = 𝑥 | 𝑝] = 𝑝𝑥 (1 − 𝑝)1−𝑥𝟙(𝑥 ∈ {0, 1})
• What is the CDF?
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Example: Uniform Distribution

• 𝑋 ∼ Uniform[0, 1] if 𝑋 has PDF

𝑓 (𝑥) = { 1 0 ≤ 𝑥 ≤ 1
0 otherwise

• The support of 𝑋 is [0, 1]
• We can also write the PDF as

𝑓 (𝑥) = 𝟙(𝑥 ∈ [0, 1])
• What is the CDF?
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Expectation
• We often want to summarize characteristics of a distribution of a random variable
• What about we take the average of a random variable, weighted by probability?
• Expectation: The expected value of a random variable 𝑋 is

𝔼[𝑋] =
⎧⎪
⎨⎪⎩

∫
∞

−∞
𝑥𝑓 (𝑥) 𝑑𝑥 = ∫

∞

−∞
𝑥 𝑑𝐹(𝑥) if 𝑋 continuous

∑
𝑥∈𝒳

𝑥𝑓 (𝑥) = ∑
𝑥∈𝒳

𝑥 ℙ[𝑋 = 𝑥] if 𝑋 discrete

• Expectation tells us about the central tendency of a distribution
• More generally, we can find the expectation of any function of 𝑋

𝔼[𝑔(𝑋)] =
⎧⎪
⎨⎪⎩

∫
∞

−∞
𝑔(𝑥)𝑓 (𝑥) 𝑑𝑥 = ∫

∞

−∞
𝑔(𝑥) 𝑑𝐹(𝑥) if 𝑋 continuous

∑
𝑥∈𝒳

𝑔(𝑥)𝑓 (𝑥) = ∑
𝑥∈𝒳

𝑔(𝑥) ℙ[𝑋 = 𝑥] if 𝑋 discrete
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Example

• Recall the Indicator Function: 𝟙(𝜔 ∈ 𝐴) = { 1 if 𝜔 ∈ 𝐴
0 if 𝜔 ∉ 𝐴

• Show that 𝔼[𝟙(𝑋 ∈ 𝐴)] = ℙ[𝐴]
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Example: Bernoulli Random Variable

• 𝑋 ∼ Bernoulli(𝑝) if 𝑋 has PMF

ℙ[𝑋 = 1] = 𝑝
ℙ[𝑋 = 0] = 1 − 𝑝

• What is 𝔼[𝑋]?

• What is 𝔼[𝑋 2]?
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Example: Uniform Distribution

• 𝑋 ∼ Uniform[0, 1] if 𝑋 has PDF

𝑓 (𝑥) = { 1 0 ≤ 𝑥 ≤ 1
0 otherwise

• What is 𝔼[𝑋]?

• What is 𝔼[𝑋 2]?
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Properties of Expected Values

1. Expectation of a constant is a constant

𝔼[𝑐] = 𝑐
2. Constants come out

𝔼[𝑐𝑔(𝑌 )] = 𝑐 𝔼[𝑔(𝑌 )]
3. Expectation is linear: For any random variables 𝑌1, … , 𝑌𝑛 (either dependent or

independent),

𝔼[𝑔(𝑌1) + ⋯ + 𝑔(𝑌𝑛)] = 𝔼[𝑔(𝑌1)] + ⋯ + 𝔼[𝑔(𝑌𝑛)]
4. If 𝑋 and 𝑌 are independent, then the product is easy

𝔼[𝑋𝑌 ] = 𝔼[𝑋] 𝔼[𝑌 ]
5. Expected Value of Expected Values:

𝔼[𝔼[𝑌 ]] = 𝔼[𝑌 ]
(since 𝔼[𝑌 ] is a constant)
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Variance and Covariance

• How do we measure the distance of a random variable 𝑋 from its mean?

𝑋 − 𝔼[𝑋]
• But we would like the “distance” to stay positive…

▶ Absolute value⇝ Hard to deal with; not differentiable
▶ Square⇝ Smoother, differentiable

• Variance tells us about the spread of the distribution around the center

𝕍ar[𝑋] = 𝔼 [(𝑋 − 𝔼[𝑋])2] = 𝔼[𝑋 2] − 𝔼[𝑋]2
• Covariancemeasures the co-movement of two random variables around their

own centers

ℂov[𝑋 , 𝑌 ] = 𝔼 [(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌 ])] = 𝔼[𝑋𝑌 ] − 𝔼[𝑋] 𝔼[𝑌 ]
• Normalize: SD[𝑋] = √𝕍ar[𝑋], ℂorr[𝑋 , 𝑌 ] = ℂov[𝑋 , 𝑌 ]/√𝕍ar[𝑋]𝕍ar[𝑌 ]
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Properties of Variance and Covariance

1. 𝕍ar[𝑐] = 0

2. 𝕍ar[𝑎 + 𝑏𝑋] = 𝑏2 𝕍ar[𝑋]

3. ℂov[𝑎 + 𝑏𝑋 , 𝑐 + 𝑑𝑌 ] = 𝑏𝑑 ℂov[𝑋 , 𝑌 ]

4. ℂov[𝑋 + 𝑍, 𝑌 + 𝑊] = ℂov[𝑋 , 𝑌 ] + ℂov[𝑋 ,𝑊 ] + ℂov[𝑍 , 𝑌 ] + ℂov[𝑍 ,𝑊 ]

5. 𝕍ar[𝑋 + 𝑌 ] = 𝕍ar[𝑋] + 𝕍ar[𝑌 ] + 2ℂov[𝑋 , 𝑌 ]
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Example: Bernoulli Random Variable

• 𝑋 ∼ Bernoulli(𝑝) if 𝑋 has PMF

ℙ[𝑋 = 1] = 𝑝
ℙ[𝑋 = 0] = 1 − 𝑝

• What is𝕍ar[𝑋]?
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Example: Uniform Distribution

• 𝑋 ∼ Uniform[0, 1] if 𝑋 has PDF

𝑓 (𝑥) = { 1 0 ≤ 𝑥 ≤ 1
0 otherwise

• What is𝕍ar[𝑋]?
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Binomial Distribution
• Suppose we repeat the Bernoulli trial for 𝑛 times
• Each trial 𝑖 follows the same distribution

𝑋𝑖 ∼ Bernoulli(𝑝), so ℙ[𝑋𝑖 = 1] = 𝑝 for all 𝑖
• Each trial also independent of each other

ℙ[𝑋𝑖 = 𝑥𝑖, 𝑋𝑗 = 𝑥𝑗] = ℙ[𝑋𝑖 = 𝑥𝑖] ℙ[𝑋𝑗 = 𝑥𝑗]
• We want to count the number of successes, denoted by 𝑌 = 𝑋1 + ⋯ + 𝑋𝑛
• One specific way to obtain 𝑦 number of success is:

ℙ[𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 0,… , 𝑋𝑛 = 0] = ℙ[𝑋1 = 1] ℙ[𝑋2 = 0]…ℙ[𝑋𝑛 = 0]
= ℙ[𝑋1 = 1] ℙ[𝑋3 = 1]…⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦 terms

× ℙ[𝑋2 = 0]…ℙ[𝑋𝑛 = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑦 terms

= 𝑝𝑝 ⋯𝑝⏟⏟⏟⏟⏟⏟⏟
𝑦 terms

× (1 − 𝑝)⋯ (1 − 𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑦 terms

= 𝑝𝑦 (1 − 𝑝)𝑛−𝑦
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Binomial Distribution

• This is just one instance of 𝑦 number of successes

• There are (𝑛𝑦) = 𝑛!
𝑦!(𝑛−𝑦)! instances that we can get 𝑦 successes

• So we have the PMF of the Binomial Distribution

ℙ[𝑌 = 𝑦 | 𝑛, 𝑝] = (𝑛𝑦)𝑝
𝑦 (1 − 𝑝)𝑛−𝑦𝟙(𝑦 ∈ {0, 1, … , 𝑛})

• The support of 𝑌 is {0, 1, … , 𝑛}
• This example shows that:

If 𝑋𝑖 ∼ i.i.d. Bernoulli(𝑝) ⇒ 𝑋1 + ⋯ + 𝑋𝑛 = 𝑌 ∼ Binomial(𝑛, 𝑝)
▶ Note that the i.i.d. (independent and identically distributed) assumption is crucial in

our derivation
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Binomial PMF and CDF
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Binomial Distribution
• 𝑋𝑖 ∼ iid Bernoulli(𝑝), 𝑋1 + ⋯ + 𝑋𝑛 = 𝑌 ∼ Binomial (𝑛, 𝑝)
• What is 𝔼[𝑌 ]?

• What is𝕍ar[𝑌 ]?
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Poisson Distribution

• Poisson distribution is often used to model rare event counts
▶ Counts of the number of events that occur during some unit of time
▶ The event would occur with a fixed “arrival rate” 𝜆 > 0
▶ ex. Number of wars in a year (assuming “arrival rate” is fixed)

• 𝑋 ∼ Poisson(𝜆) if 𝑋 has PMF

ℙ[𝑋 = 𝑥 | 𝜆] = 𝑒−𝜆𝜆𝑥
𝑥! 𝟙(𝑥 ∈ {0, 1, 2, …})

• The support of 𝑋 is {0, 1, 2, …}
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Poisson Distribution

• 𝑋 ∼ Poisson(𝜆) if 𝑋 has PMF

ℙ[𝑋 = 𝑥 | 𝜆] = 𝑒−𝜆𝜆𝑥
𝑥! 𝟙(𝑥 ∈ {0, 1, 2, …})

• Is this a legitimate PMF? (Does it follow the two conditions?)
▶ Note the Taylor expansion of 𝑒𝑥 around 𝑥 = 0:

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + ⋯
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Poisson PMF and CDF
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Poisson Distribution

• 𝑋 ∼ Poisson(𝜆) if 𝑋 has PMF

ℙ[𝑋 = 𝑥 | 𝜆] = 𝑒−𝜆𝜆𝑥
𝑥! 𝟙(𝑥 ∈ {0, 1, 2, …})

• What is 𝔼[𝑋]?
▶ Hint: Use the fact that PMF sums to 1: ∑∞

𝑥=0
𝑒−𝜆𝜆𝑥

𝑥! = 1
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Poisson Distribution

• 𝑋 ∼ Poisson(𝜆) if 𝑋 has PMF

ℙ[𝑋 = 𝑥 | 𝜆] = 𝑒−𝜆𝜆𝑥
𝑥! 𝟙(𝑥 ∈ {0, 1, 2, …})

• Show that 𝔼[𝑋 2] = 𝜆(𝜆 + 1)
▶ Hint: Use the fact that PMF sums to 1: ∑∞

𝑥=0
𝑒−𝜆𝜆𝑥

𝑥! = 1

• Show that𝕍ar[𝑋] = 𝜆
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