Multivariate Differentiation \& Integral Calculus

Keng-Chi Chang
Department of Political Science
University of California San Diego

September 9, 2022

What about functions with several variables?

- So far, we discussed functions of single variable

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

What about functions with several variables?

- So far, we discussed functions of single variable

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

- Function of n variables x_{1}, \cdots, x_{n}

What about functions with several variables?

- So far, we discussed functions of single variable

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

- Function of n variables x_{1}, \cdots, x_{n}

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}
$$

What about functions with several variables?

- So far, we discussed functions of single variable

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

- Function of n variables x_{1}, \cdots, x_{n}

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}
$$

- e.g.
- $f(x, y, z)=3 x y-y^{2} x+2$
- $f(\mathbf{x})=f\left(x_{1}, \cdots, x_{5}\right)=x_{1} x_{3}-x_{2} x_{5}$

Partial Derivatives

- How do we find the rate of change for a function with several variables?

Partial Derivatives

- How do we find the rate of change for a function with several variables?
- Partial derivatives provides one solution by treating all other variables equal ("ceteris paribus")

$$
\frac{\partial}{\partial x} f(x, y) \equiv \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

Partial Derivatives

- How do we find the rate of change for a function with several variables?
- Partial derivatives provides one solution by treating all other variables equal ("ceteris paribus")

$$
\frac{\partial}{\partial x} f(x, y) \equiv \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

- How to calculate: Treat every variable other than x as a constant, and just take the derivative with respect to x

Partial Derivatives

- How do we find the rate of change for a function with several variables?
- Partial derivatives provides one solution by treating all other variables equal ("ceteris paribus")

$$
\frac{\partial}{\partial x} f(x, y) \equiv \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

- How to calculate: Treat every variable other than x as a constant, and just take the derivative with respect to x
- Written as

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { or } \frac{\partial f}{\partial x} \text { or } \partial_{x} f \text { or } f_{x}
$$

Partial Derivatives

- How do we find the rate of change for a function with several variables?
- Partial derivatives provides one solution by treating all other variables equal ("ceteris paribus")

$$
\frac{\partial}{\partial x} f(x, y) \equiv \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

- How to calculate: Treat every variable other than x as a constant, and just take the derivative with respect to x
- Written as

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { or } \frac{\partial f}{\partial x} \text { or } \partial_{x} f \text { or } f_{x}
$$

- Higher-order partial derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}} \equiv \frac{\partial^{2} f}{\partial x \partial x} \equiv \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y} \equiv \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

Partial Derivatives

- How do we find the rate of change for a function with several variables?
- Partial derivatives provides one solution by treating all other variables equal ("ceteris paribus")

$$
\frac{\partial}{\partial x} f(x, y) \equiv \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

- How to calculate: Treat every variable other than x as a constant, and just take the derivative with respect to x
- Written as

$$
\frac{\partial}{\partial x} f(x, y) \quad \text { or } \frac{\partial f}{\partial x} \text { or } \partial_{x} f \text { or } f_{x}
$$

- Higher-order partial derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}} \equiv \frac{\partial^{2} f}{\partial x \partial x} \equiv \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y} \equiv \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

Partial Derivatives: Examples

- Find all the partial derivatives of

$$
f(x, z)=x z
$$

Partial Derivatives: Examples

- $f\left(x_{1}, x_{2}, x_{3}\right)=6+3 x_{1}+\frac{5}{2} x_{2}+x_{3}^{2}$

Partial Derivatives: Examples

- $f(x, z)=3 z^{3}-3 z^{2}+\sqrt{z}+x$

Partial Derivatives: Examples

- In a regression context, let

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} z+\beta_{3} x z+e
$$

find $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$

Gradient Vector and Hessian Matrix

For multivariate function $f\left(x_{1}, \cdots, x_{n}\right)$

- Gradient: The (row) vector of first-order partial derivatives

$$
\nabla f \equiv\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}} & \cdots
\end{array}\right] \in \mathbb{R}^{1 \times n}
$$

Gradient Vector and Hessian Matrix

For multivariate function $f\left(x_{1}, \cdots, x_{n}\right)$

- Gradient: The (row) vector of first-order partial derivatives

$$
\nabla f \equiv\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}} & \cdots
\end{array}\right] \in \mathbb{R}^{1 \times n}
$$

- Gradient points in the direction of the steepest rate of increase

Gradient Vector and Hessian Matrix

For multivariate function $f\left(x_{1}, \cdots, x_{n}\right)$

- Gradient: The (row) vector of first-order partial derivatives

$$
\nabla f \equiv\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}} & \cdots
\end{array}\right] \in \mathbb{R}^{1 \times n}
$$

- Gradient points in the direction of the steepest rate of increase
- Hessian: The matrix of second-order partial derivatives

$$
\nabla^{2} f \equiv \mathbf{H}_{f} \equiv\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Gradient Vector and Hessian Matrix

For multivariate function $f\left(x_{1}, \cdots, x_{n}\right)$

- Gradient: The (row) vector of first-order partial derivatives

$$
\nabla f \equiv\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}} & \cdots
\end{array}\right] \in \mathbb{R}^{1 \times n}
$$

- Gradient points in the direction of the steepest rate of increase
- Hessian: The matrix of second-order partial derivatives

$$
\nabla^{2} f \equiv \mathbf{H}_{f} \equiv\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Gradient and Hessian: Example

- Let $f(x, y)=x^{3} y^{4}+e^{x}-\ln (y)$
- Find

$$
\frac{\partial}{\partial x}, \quad \frac{\partial}{\partial y}, \quad \frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}
$$

- Find gradient of f
- Find Hessian of f

Taylor Approximation

- Taylor Approximation: Linear approximation of a function around point $x=a$

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

Taylor Approximation

- Taylor Approximation: Linear approximation of a function around point $x=a$

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

- You can verify this by taking derivatives on both sides of the equation repeatedly

Taylor Approximation

- Taylor Approximation: Linear approximation of a function around point $x=a$

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

- You can verify this by taking derivatives on both sides of the equation repeatedly
- For multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can approximate (omit terms $(x-a)^{n}$ where $n \geq 3$ since they shrinks faster)

Taylor Approximation

- Taylor Approximation: Linear approximation of a function around point $x=a$

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

- You can verify this by taking derivatives on both sides of the equation repeatedly
- For multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can approximate (omit terms $(x-a)^{n}$ where $n \geq 3$ since they shrinks faster)

$$
f(\mathbf{x}) \approx f(\mathbf{a})+\underset{(1 \times n)}{\nabla f(\mathbf{a})(\mathbf{x}-\mathbf{a})}+\frac{1}{2}\left(\underline{(n \times 1)} \underset{(1 \times n)}{(\mathbf{x}-\mathbf{a})^{\top}} \underset{(n \times n)}{\mathbf{H}(\mathbf{a})}(\underset{(n \times 1)}{(\mathbf{x}-\mathbf{a})},\right.
$$

Taylor Approximation

- Taylor Approximation: Linear approximation of a function around point $x=a$

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
\end{aligned}
$$

- You can verify this by taking derivatives on both sides of the equation repeatedly
- For multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can approximate (omit terms $(x-a)^{n}$ where $n \geq 3$ since they shrinks faster)

$$
f(\mathbf{x}) \approx f(\mathbf{a})+\underset{(1 \times n)}{\nabla f(\mathbf{a})(\mathbf{x}-\mathbf{a})}+\frac{1}{2}\left(\underline{(n \times 1)} \underset{(1 \times n)}{(\mathbf{x}-\mathbf{a})^{\top}} \underset{(n \times n)}{\mathbf{H}(\mathbf{a})(\underset{(n \times 1)}{(\mathbf{x}-\mathbf{a})},}\right.
$$

where $\nabla f(\mathbf{a})$ and $\mathbf{H}(\mathbf{a})$ are the gradient and Hessian evaluated at the vector a

Why convex implies local minimum?

- By Taylor approximation of univariate function

$$
\begin{aligned}
f(x)-f(a) & \approx f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} \\
& =0 \cdot(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} \\
& \begin{cases}>0 \text { if } f^{\prime \prime}(a)>0 & \left(\text { so } f^{\prime \prime}(a)>0 \Rightarrow f(x)>f(a) \Rightarrow f(a) \min \right) \\
<0 \text { if } f^{\prime \prime}(a)<0 & \text { (so } \left.f^{\prime \prime}(a)<0 \Rightarrow f(x)<f(a) \Rightarrow f(a) \max \right)\end{cases}
\end{aligned}
$$

Why convex implies local minimum?

- By Taylor approximation of univariate function

$$
\begin{aligned}
f(x)-f(a) & \approx f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} \\
& =0 \cdot(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} \\
& \begin{cases}>0 \text { if } f^{\prime \prime}(a)>0 & \left(\text { so } f^{\prime \prime}(a)>0 \Rightarrow f(x)>f(a) \Rightarrow f(a) \min \right) \\
<0 \text { if } f^{\prime \prime}(a)<0 & \text { (so } \left.f^{\prime \prime}(a)<0 \Rightarrow f(x)<f(a) \Rightarrow f(a) \max \right)\end{cases}
\end{aligned}
$$

- Similarly, for multivariate functions we want

$$
\begin{aligned}
f(\mathbf{x})-f(\mathbf{a}) & \approx \nabla f(\mathbf{a})(\mathbf{x}-\mathbf{a})+\frac{1}{2}(\mathbf{x}-\mathbf{a})^{\top} \mathbf{H}(\mathbf{a})(\mathbf{x}-\mathbf{a}) \\
& =\frac{1}{2}(\mathbf{x}-\mathbf{a})^{\top} \mathbf{H}(\mathbf{a})(\mathbf{x}-\mathbf{a})
\end{aligned}
$$

$\left\{>0\right.$ to get mininum, we need to have that $\mathbf{u}^{\top} \mathbf{H}(\mathbf{a}) \mathbf{u}>0$ for all \mathbf{u} <0 to get maximum, we need to have that $\mathbf{u}^{\top} \mathbf{H}(\mathbf{a}) \mathbf{u}<0$ for all $\boldsymbol{\mu}_{/ 40}$

Positive and Negative Definite Matrix

Definition

Consider a $n \times n$ matrix \mathbf{A}. If, for all $\mathbf{x} \in \mathbb{R}^{n}$ where $\mathbf{x} \neq \mathbf{0}$:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \\
& \mathbf{x}^{\top} \mathbf{A x}<0 \text {, we say } \mathbf{A} \text { is positive definite; } \\
& \mathbf{A} \text { is negative definite. }
\end{aligned}
$$

If $\mathbf{x}^{\top} \mathbf{A x}>0$ for some \mathbf{x} and $\mathbf{x}^{\top} \mathbf{A x}<0$ for other x , then we say A is indefinite.

Positive and Negative Definite Matrix

Definition

Consider a $n \times n$ matrix \mathbf{A}. If, for all $\mathbf{x} \in \mathbb{R}^{n}$ where $\mathbf{x} \neq \mathbf{0}$:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{A} \mathbf{x} 0 \text {, we say } \mathbf{A} \text { is positive definite; } \\
& \mathbf{x}^{\top} \mathbf{A x}<0 \text {, we say } \mathbf{A} \text { is negative definite. }
\end{aligned}
$$

If $\mathbf{x}^{\top} \mathbf{A x}>0$ for some \mathbf{x} and $\mathbf{x}^{\top} \mathbf{A x}<0$ for other x , then we say A is indefinite.

Property

For a 2×2 matrix $\mathbf{A}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$:

- If $\operatorname{det}(\mathrm{A})>0$ and $A_{11}>0$, then A is positive definite

Positive and Negative Definite Matrix

Definition

Consider a $n \times n$ matrix \mathbf{A}. If, for all $\mathbf{x} \in \mathbb{R}^{n}$ where $\mathbf{x} \neq \mathbf{0}$:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{A} \mathbf{x} 0 \text {, we say } \mathbf{A} \text { is positive definite; } \\
& \mathbf{x}^{\top} \mathbf{A x}<0 \text {, we say } \mathbf{A} \text { is negative definite. }
\end{aligned}
$$

If $\mathbf{x}^{\top} \mathbf{A x}>0$ for some \mathbf{x} and $\mathbf{x}^{\top} \mathbf{A x}<0$ for other x , then we say A is indefinite.

Property

For a 2×2 matrix $\mathbf{A}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$:

- If $\operatorname{det}(\mathbf{A})>0$ and $A_{11}>0$, then A is positive definite
- If $\operatorname{det}(\mathbf{A})>0$ and $A_{11}<0$, then \mathbf{A} is negative definite

Positive and Negative Definite Matrix

Definition

Consider a $n \times n$ matrix \mathbf{A}. If, for all $\mathbf{x} \in \mathbb{R}^{n}$ where $\mathbf{x} \neq \mathbf{0}$:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{A} \mathbf{x} 0 \text {, we say } \mathbf{A} \text { is positive definite; } \\
& \mathbf{x}^{\top} \mathbf{A x}<0 \text {, we say } \mathbf{A} \text { is negative definite. }
\end{aligned}
$$

If $\mathbf{x}^{\top} \mathbf{A x}>0$ for some \mathbf{x} and $\mathbf{x}^{\top} \mathbf{A x}<0$ for other x , then we say A is indefinite.

Property

For a 2×2 matrix $\mathbf{A}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$:

- If $\operatorname{det}(\mathbf{A})>0$ and $A_{11}>0$, then A is positive definite
- If $\operatorname{det}(\mathbf{A})>0$ and $A_{11}<0$, then \mathbf{A} is negative definite
- If $\operatorname{det}(\mathbf{A})<0$, then A is indefinite

Positive and Negative Definite Matrix

Definition

Consider a $n \times n$ matrix \mathbf{A}. If, for all $\mathbf{x} \in \mathbb{R}^{n}$ where $\mathbf{x} \neq \mathbf{0}$:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{A} \mathbf{x} 0 \text {, we say } \mathbf{A} \text { is positive definite; } \\
& \mathbf{x}^{\top} \mathbf{A x}<0 \text {, we say } \mathbf{A} \text { is negative definite. }
\end{aligned}
$$

If $\mathbf{x}^{\top} \mathbf{A x}>0$ for some \mathbf{x} and $\mathbf{x}^{\top} \mathbf{A x}<0$ for other x , then we say A is indefinite.

Property

For a 2×2 matrix $\mathbf{A}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$:

- If $\operatorname{det}(\mathbf{A})>0$ and $A_{11}>0$, then A is positive definite
- If $\operatorname{det}(\mathbf{A})>0$ and $A_{11}<0$, then \mathbf{A} is negative definite
- If $\operatorname{det}(\mathbf{A})<0$, then A is indefinite

Solving Multivariate Optimization

- Calculate gradient (First Order Condition)
- Set it equal to zero, solve system of equations to get critical values a

Solving Multivariate Optimization

- Calculate gradient (First Order Condition)
- Set it equal to zero, solve system of equations to get critical values a
- Calculate Hessian (Second Order Condition)
- Evaluate Hessian at critical values a

Solving Multivariate Optimization

- Calculate gradient (First Order Condition)
- Set it equal to zero, solve system of equations to get critical values a
- Calculate Hessian (Second Order Condition)
- Evaluate Hessian at critical values a
- For Hessian $H=\mathbf{H}(\mathbf{a})$ that is 2×2
- If $\operatorname{det}(H)>0$ and $H_{11}>0 \Rightarrow$ positive definite $\Rightarrow \mathbf{a}$ is local minimum
- If $\operatorname{det}(H)>0$ and $H_{11}<0 \Rightarrow$ negative definite $\Rightarrow \mathbf{a}$ is local maximum
- If $\operatorname{det}(H)<0 \Rightarrow$ indefinite $\Rightarrow \mathbf{a}$ can be a saddle point
- If $\operatorname{det}(H)=0 \Rightarrow$ inconclusive

Solving Multivariate Optimization

- Calculate gradient (First Order Condition)
- Set it equal to zero, solve system of equations to get critical values a
- Calculate Hessian (Second Order Condition)
- Evaluate Hessian at critical values a
- For Hessian $H=\mathbf{H}(\mathbf{a})$ that is 2×2
- If $\operatorname{det}(H)>0$ and $H_{11}>0 \Rightarrow$ positive definite $\Rightarrow \mathbf{a}$ is local minimum
- If $\operatorname{det}(H)>0$ and $H_{11}<0 \Rightarrow$ negative definite $\Rightarrow \mathbf{a}$ is local maximum
- If $\operatorname{det}(H)<0 \Rightarrow$ indefinite $\Rightarrow \mathbf{a}$ can be a saddle point
- If $\operatorname{det}(H)=0 \Rightarrow$ inconclusive
- Compare to values at the boundary (if solving global extremum)

Multivariate Optimization: Example

- Find the local extremum of

$$
f\left(x_{1}, x_{2}\right)=3\left(x_{1}+2\right)^{2}+4\left(x_{2}+4\right)^{2}
$$

Multivariate Optimization: Example

- Suppose legislators are considering legislation $\mathbf{x} \in \mathbb{R}^{2}$. And suppose legislator i has utility function $U_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
U_{i}(\mathbf{x})=-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}
$$

What is legislator i 's optimal policy?

Why study integral calculus?

- Back out f from f^{\prime}, consider the graphs
- If $f^{\prime}(x)=2$, what is $f(x)$?
- If $f^{\prime}(x)=2 x$, what is $f(x)$?

Why study integral calculus?

- Back out f from f^{\prime}, consider the graphs
- If $f^{\prime}(x)=2$, what is $f(x)$?
- If $f^{\prime}(x)=2 x$, what is $f(x)$?
- Find the area function $(A(x))$ under the curve of a function $f(x)$

$$
A(x+h) \approx A(x)+f(x) \cdot h
$$

- A concrete example

Why study integral calculus?

- Back out f from f^{\prime}, consider the graphs
- If $f^{\prime}(x)=2$, what is $f(x)$?
- If $f^{\prime}(x)=2 x$, what is $f(x)$?
- Find the area function $(A(x))$ under the curve of a function $f(x)$

$$
A(x+h) \approx A(x)+f(x) \cdot h
$$

- A concrete example

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f. We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f. We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

- Antiderivative is doing the reverse of the derivative

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

- Antiderivative is doing the reverse of the derivative
- Find the antiderivative of the following:
- $f(x)=x$

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

- Antiderivative is doing the reverse of the derivative
- Find the antiderivative of the following:
- $f(x)=x$
- $f(x)=\frac{1}{x}$

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

- Antiderivative is doing the reverse of the derivative
- Find the antiderivative of the following:
- $f(x)=x$
- $f(x)=\frac{1}{x}$
- $f(x)=\frac{1}{x^{2}}$

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

- Antiderivative is doing the reverse of the derivative
- Find the antiderivative of the following:
- $f(x)=x$
- $f(x)=\frac{1}{x}$
- $f(x)=\frac{1}{x^{2}}$
- $f(x)=3 e^{3 x}$

Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f. We often denote the antiderivative of f as F, i.e,

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

- Antiderivative is doing the reverse of the derivative
- Find the antiderivative of the following:
- $f(x)=x$
- $f(x)=\frac{1}{x}$
- $f(x)=\frac{1}{x^{2}}$
- $f(x)=3 e^{3 x}$
- How do we write the antiderivative in a more systematic way?

Indefinite Integral

Definition

The antiderivative of $f(x)$ can also be written as

$$
F(x)=\int f(x) d x
$$

which is called the indefinite integral. Thus, we have that

$$
\frac{d F(x)}{d x}=\frac{d}{d x} \int f(x) d x=f(x)
$$

Indefinite Integral

Definition

The antiderivative of $f(x)$ can also be written as

$$
F(x)=\int f(x) d x
$$

which is called the indefinite integral. Thus, we have that

$$
\frac{d F(x)}{d x}=\frac{d}{d x} \int f(x) d x=f(x)
$$

- Useful heuristic: $\frac{d}{d x}$ and $\int d x$ cancels out
- Differentiation and integration are doing the reverse works

Indefinite Integral

Definition

The antiderivative of $f(x)$ can also be written as

$$
F(x)=\int f(x) d x
$$

which is called the indefinite integral. Thus, we have that

$$
\frac{d F(x)}{d x}=\frac{d}{d x} \int f(x) d x=f(x) .
$$

- Useful heuristic: $\frac{d}{d x}$ and $\int d x$ cancels out
- Differentiation and integration are doing the reverse works
- Some would also denote that (useful for probability, e.g. $F(x)$ is the CDF of X)

$$
d F(x)=f(x) d x
$$

Why denote this way? Riemann Sum

- Suppose we would like to find the area under the curve $f(x)$

Why denote this way? Riemann Sum

- Suppose we would like to find the area under the curve $f(x)$
- Let the width be denoted Δx, then area of each rectangle is $f\left(x_{i}\right) \Delta x$
- $f\left(x_{i}\right)$ is the value of the function at each evenly spaced point

Why denote this way? Riemann Sum

- Suppose we would like to find the area under the curve $f(x)$
- Let the width be denoted Δx, then area of each rectangle is $f\left(x_{i}\right) \Delta x$
- $f\left(x_{i}\right)$ is the value of the function at each evenly spaced point
- Then the total area is $\sum_{i} f\left(x_{i}\right) \Delta x$

$$
\Delta \mathrm{x}=0.2
$$

Why denote this way? Riemann Sum

- This sum converges to the true area as $\Delta x \rightarrow 0$, so we denote

$$
\lim _{\Delta x \rightarrow 0} \sum_{i} f\left(x_{i}\right) \Delta x=\int f(x) d x
$$

Why denote this way? Riemann Sum

- This sum converges to the true area as $\Delta x \rightarrow 0$, so we denote

$$
\lim _{\Delta x \rightarrow 0} \sum_{i} f\left(x_{i}\right) \Delta x=\int f(x) d x
$$

- Indefinite integral: area as a function of x, which is a function

$$
\int f(x) d x
$$

Why denote this way? Riemann Sum

- This sum converges to the true area as $\Delta x \rightarrow 0$, so we denote

$$
\lim _{\Delta x \rightarrow 0} \sum_{i} f\left(x_{i}\right) \Delta x=\int f(x) d x
$$

- Indefinite integral: area as a function of x, which is a function

$$
\int f(x) d x
$$

- Definite integral: area from $x=a$ to $x=b$, which is a fixed number

$$
\int_{a}^{b} f(x) d x
$$

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and II.)

Let $f(x)$ be continuous over an interval $[a, b]$.
I. If we define the function $F(x)$ defined by

$$
F(x)=\int_{a}^{x} f(x) d x,
$$

we have that $F^{\prime}(x)=f(x)$ for all x in $[a, b]$.

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and II.)

Let $f(x)$ be continuous over an interval $[a, b]$.
I. If we define the function $F(x)$ defined by

$$
F(x)=\int_{a}^{x} f(x) d x
$$

we have that $F^{\prime}(x)=f(x)$ for all x in $[a, b]$.
II. Let $F(x)$ be any antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-\left.F(a) \equiv F(x)\right|_{x=b} ^{a}
$$

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and II.)

Let $f(x)$ be continuous over an interval $[a, b]$.
I. If we define the function $F(x)$ defined by

$$
F(x)=\int_{a}^{x} f(x) d x
$$

we have that $F^{\prime}(x)=f(x)$ for all x in $[a, b]$.
II. Let $F(x)$ be any antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-\left.F(a) \equiv F(x)\right|_{x=b} ^{a}
$$

- Part I. tells you a way to define the antiderivative $F(x)$
- Part II. tells you how to evaluate the definite integral: plug-in to $F(x)$

Fundamental Theorem of Calculus: Example

- $f(x)=x^{2}$, what is $F(x)$?

Fundamental Theorem of Calculus: Example

- $f(x)=x^{2}$, what is $F(x)$?
- $F(x)=\frac{1}{3} x^{3}+C$

Fundamental Theorem of Calculus: Example

- $f(x)=x^{2}$, what is $F(x)$?
- $F(x)=\frac{1}{3} x^{3}+C$
- What about

$$
\int_{1}^{2} x^{2} d x
$$

Fundamental Theorem of Calculus: Example

- $f(x)=x^{2}$, what is $F(x)$?
- $F(x)=\frac{1}{3} x^{3}+C$
- What about

$$
\int_{1}^{2} x^{2} d x
$$

- $\left.F(x)\right|_{x=1} ^{2}=F(2)-F(1)=\left[\frac{1}{3}(2)^{3}+C\right]-\left[\frac{1}{3}(1)^{3}+C\right]=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$

Properties of Definite Integral

1. There is no area below a point:

$$
\int_{a}^{a} f(x) d x=0
$$

Properties of Definite Integral

1. There is no area below a point:

$$
\int_{a}^{a} f(x) d x=0
$$

2. Reversing the limits changes the sign of the integral:

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

Properties of Definite Integral

1. There is no area below a point:

$$
\int_{a}^{a} f(x) d x=0
$$

2. Reversing the limits changes the sign of the integral:

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

3. Sums can be separated into their own integrals:

$$
\int_{a}^{b}[\alpha f(x)+\beta g(x)] d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x
$$

Properties of Definite Integral

1. There is no area below a point:

$$
\int_{a}^{a} f(x) d x=0
$$

2. Reversing the limits changes the sign of the integral:

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

3. Sums can be separated into their own integrals:

$$
\int_{a}^{b}[\alpha f(x)+\beta g(x)] d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x
$$

4. Areas can be combined as long as limits are linked:

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

Rules of Integration

Rules of Integration

$$
\int k d x=k x+C
$$

Rules of Integration

Rules of Integration

$$
\begin{align*}
& \int k d x=k x+C \\
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(n \neq-1) \tag{Power}
\end{align*}
$$

Rules of Integration

Rules of Integration

$$
\begin{align*}
\int k d x & =k x+C \\
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C \quad(n \neq-1) \tag{Power}\\
\int x^{-1} d x & =\int \frac{1}{x} d x=\ln |x|+C
\end{align*}
$$

(Notice the $|\cdot|$)

Rules of Integration

Rules of Integration

$$
\begin{align*}
\int k d x & =k x+C \\
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C \quad(n \neq-1) \tag{Power}\\
\int x^{-1} d x & =\int \frac{1}{x} d x=\ln |x|+C \\
\int e^{x} d x & =e^{x}+C
\end{align*}
$$

(Notice the $|\cdot|$)
(Exponential)

Rules of Integration

Rules of Integration

$$
\begin{align*}
\int k d x & =k x+C \\
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C \quad(n \neq-1) \tag{Power}\\
\int x^{-1} d x & =\int \frac{1}{x} d x=\ln |x|+C \\
\int e^{x} d x & =e^{x}+C \\
\int \ln (x) d x & =x \ln (x)-x+C
\end{align*}
$$

(Notice the $|\cdot|$)
(Exponential)
(Logarithm)

Integration: Examples

- Find

$$
\int x^{3} d x
$$

Integration: Examples

- Find

$$
\int \frac{1}{x^{5}} d x
$$

Integration: Examples

- Find

$$
\int \sqrt{x} d x
$$

Integration: Examples

- Find

$$
\int_{1}^{4}(2 x+1) d x
$$

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$
- Do the reverse in integration

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$
- Do the reverse in integration
- Suppose $g(x)$ is complex and hard to integrate

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$
- Do the reverse in integration
- Suppose $g(x)$ is complex and hard to integrate
- Find a function $u=u(x)$ such that

$$
g(x)=f(u(x)) u^{\prime}(x)
$$

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$
- Do the reverse in integration
- Suppose $g(x)$ is complex and hard to integrate
- Find a function $u=u(x)$ such that

$$
g(x)=f(u(x)) u^{\prime}(x)
$$

then we have

$$
\int g(x) d x=\int f(u(x)) \underbrace{u^{\prime}(x) d x}_{\frac{d u}{d x} \cdot d x}=\int f(u) d u=F[u(x)]+C
$$

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$
- Do the reverse in integration
- Suppose $g(x)$ is complex and hard to integrate
- Find a function $u=u(x)$ such that

$$
g(x)=f(u(x)) u^{\prime}(x)
$$

then we have

$$
\int g(x) d x=\int f(u(x)) \underbrace{u^{\prime}(x) d x}_{\frac{d u}{d x} \cdot d x}=\int f(u) d u=F[u(x)]+C
$$

- Key: Substitute $g(x) d x$ into some $f(u) d u$, integrate with respect to u
- For definite integrals, remember to change the upper/lower bounds from x to u
- For indefinite integrals, remember to substitute u back to x

Integration by Substitution

- Recall the Chain Rule: Let $u=h(x)$, then $(f(u))^{\prime}=f^{\prime}(u) \cdot h^{\prime}(x)$
- Do the reverse in integration
- Suppose $g(x)$ is complex and hard to integrate
- Find a function $u=u(x)$ such that

$$
g(x)=f(u(x)) u^{\prime}(x)
$$

then we have

$$
\int g(x) d x=\int f(u(x)) \underbrace{u^{\prime}(x) d x}_{\frac{d u}{d x} \cdot d x}=\int f(u) d u=F[u(x)]+C
$$

- Key: Substitute $g(x) d x$ into some $f(u) d u$, integrate with respect to u
- For definite integrals, remember to change the upper/lower bounds from x to u
- For indefinite integrals, remember to substitute u back to x
- Useful for composite functions (square root, fractions, power, etc)

Integration by Substitution: Example

- Integrate $g(x)=x^{2} \sqrt{x+1}$
- Let $u=x+1$, then $d u=d x$, substitute into $\int g(x) d x$

Integration by Substitution: Example

- Integrate $g(x)=\frac{1}{\sqrt{2 \pi}} x e^{-\frac{x^{2}}{2}}$
- Let $u=-\frac{x^{2}}{2}$, then $d u=-x d x$, substitute into $\int g(x) d x$

Integration by Substitution: Example

- Find

$$
\int x^{4} e^{x^{5}} d x
$$

- Let $u=x^{5}$, then $d u=5 x^{4} d x$

Integration by Substitution: Example

- Show that $\int a^{x} d x=\frac{a^{x}}{\ln (a)}+C$
- Again, $a^{x}=e^{\ln a^{x}}=e^{x \ln a}$
- Let $u=x \ln a$, then $d u=\ln a d x$

Integration by Parts

- Let $u=u(x)$ and $v=v(x)$, recall the Product Rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Integration by Parts

- Let $u=u(x)$ and $v=v(x)$, recall the Product Rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Integrating this and rearrange we get

$$
\begin{aligned}
\int u \frac{d v}{d x} d x & =u v-\int v \frac{d u}{d x} d x \\
\int u(x) v^{\prime}(x) d x & =u(x) v(x)-\int v(x) u^{\prime}(x) d x
\end{aligned}
$$

Integration by Parts

- Let $u=u(x)$ and $v=v(x)$, recall the Product Rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Integrating this and rearrange we get

$$
\begin{aligned}
\int u \frac{d v}{d x} d x & =u v-\int v \frac{d u}{d x} d x \\
\int u(x) v^{\prime}(x) d x & =u(x) v(x)-\int v(x) u^{\prime}(x) d x
\end{aligned}
$$

- Simpler form

$$
\int u d v=u v-\int v d u \text { and } \int_{x=a}^{b} u d v=\left.u v\right|_{x=a} ^{b}-\int_{x=a}^{b} v d u
$$

Integration by Parts

- Let $u=u(x)$ and $v=v(x)$, recall the Product Rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Integrating this and rearrange we get

$$
\begin{aligned}
\int u \frac{d v}{d x} d x & =u v-\int v \frac{d u}{d x} d x \\
\int u(x) v^{\prime}(x) d x & =u(x) v(x)-\int v(x) u^{\prime}(x) d x
\end{aligned}
$$

- Simpler form

$$
\int u d v=u v-\int v d u \text { and } \int_{x=a}^{b} u d v=\left.u v\right|_{x=a} ^{b}-\int_{x=a}^{b} v d u
$$

- Key: Find u and $d v$ such that $g(x) d x=u d v$, then use the above formula

Integration by Parts

- Let $u=u(x)$ and $v=v(x)$, recall the Product Rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Integrating this and rearrange we get

$$
\begin{aligned}
\int u \frac{d v}{d x} d x & =u v-\int v \frac{d u}{d x} d x \\
\int u(x) v^{\prime}(x) d x & =u(x) v(x)-\int v(x) u^{\prime}(x) d x
\end{aligned}
$$

- Simpler form

$$
\int u d v=u v-\int v d u \text { and } \int_{x=a}^{b} u d v=\left.u v\right|_{x=a} ^{b}-\int_{x=a}^{b} v d u
$$

- Key: Find u and $d v$ such that $g(x) d x=u d v$, then use the above formula
- Useful for products of x and e^{x} or $\ln x$

Integration by Parts: Examples

- Find

$$
\int x e^{x} d x \text { and } \int_{1}^{4} x e^{x} d x
$$

- Let $u=x$ and $d v=e^{x} d x$

Integration by Parts: Examples

- Show that $\int \ln x d x=x \ln x-x+C$
- Let $u=\ln x$ and $d v=\frac{1}{x} d x$
- Show that $\int \log _{a}(x) d x=\frac{x \ln (x)-x}{\ln (a)}+C$
- Again, $\log _{a}(x)=\frac{\ln x}{\ln a}$

Integration by Parts: Harder Examples

- Find

$$
\int x^{n} e^{a x} d x
$$

- Let $u=x^{n}$ and $d v=e^{a x} d x$

Integration by Parts: Harder Examples

- Find

$$
\int x^{3} e^{-x^{2}} d x
$$

- Let $u=x^{2}$ and $d v=x e^{-x^{2}} d x$
- Use substitution $t=-x^{2}$ on $d v$ to get v

Improper Integral

- Improper Integral: Definite integrals but boundaries involve $\pm \infty$

Improper Integral

- Improper Integral: Definite integrals but boundaries involve $\pm \infty$
- How to evaluate? Take limits

$$
\begin{aligned}
& \int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
& \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x \\
& \int_{-\infty}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \lim _{s \rightarrow-\infty} \int_{s}^{t} f(x) d x
\end{aligned}
$$

Improper Integral

- Improper Integral: Definite integrals but boundaries involve $\pm \infty$
- How to evaluate? Take limits

$$
\begin{aligned}
& \int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
& \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x \\
& \int_{-\infty}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \lim _{s \rightarrow-\infty} \int_{s}^{t} f(x) d x
\end{aligned}
$$

- Many applications (infinite time-horizon bargaining, exponential distribution, etc)

Improper Integral: Example

- Let β be a fixed constant. Find

$$
\int_{0}^{\infty} \frac{1}{\beta} e^{-\frac{x}{\beta}} d x
$$

- Note: This is the probability density function of the exponential distribution

