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What about functions with several variables?

* So far, we discussed functions of single variable
f:R—>R
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What about functions with several variables?

* So far, we discussed functions of single variable

f:R—>R

* Function of n variables xy, -+, x;,

f:]R”—>1R1

* eg.

> f(x,y,2) =3xy— y*’x +2
> f(x) = f(xp, o, X5) = XX — XX
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Partial Derivatives

* How do we find the rate of change for a function with several variables?
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Partial Derivatives: Examples

* Find all the partial derivatives of

f(x,2) = xz
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Partial Derivatives: Examples

o f(x1,x0,%3) = 6+ 3x; + gxz + xg‘
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Partial Derivatives: Examples

© f(x,2) =32 - 322 + Jz + x
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Partial Derivatives: Examples

* In aregression context, let

y =By + Pix + Paz + P3xz +e,

% %y
find p and P
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Gradient Vector and Hessian Matrix

For multivariate function f(xq, -, x;)
* Gradient: The (row) vector of first-order partial derivatives

sz[ﬁ of of ...]E]Rlel

ox;  0xy, 0x3
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Vf = [ﬂ of ] € RIxn

of
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8/40



Gradient Vector and Hessian Matrix

For multivariate function f(xq, -, x;)

* Gradient: The (row) vector of first-order partial derivatives

sz[ﬁ

axl

of
3x2 a}%

of

] € RIxn

» Gradient points in the direction of the steepest rate of increase

* Hessian: The matrix of second-order partial derivatives

szEHfE

[ 9 f »*f *f 7
a_xl2 0x1 9x, 0x1 0x;,
*f »*f »*f

0%,y 0% 3_)(22 0x, 0x;,
*f o*f *f

| 0x,,9x; 09X, 9%, @ i

€ ]Ran

8/40



Gradient Vector and Hessian Matrix

For multivariate function f(xq, -, x;)

* Gradient: The (row) vector of first-order partial derivatives

sz[ﬁ

axl

of
3x2 a}%

of

] € RIxn

» Gradient points in the direction of the steepest rate of increase

* Hessian: The matrix of second-order partial derivatives

szEHfE

[ 9 f »*f *f 7
a_xl2 0x1 9x, 0x1 0x;,
*f »*f »*f

0%,y 0% 3_)(22 0x, 0x;,
*f o*f *f

| 0x,,9x; 09X, 9%, @ i

€ ]Ran

8/40



Gradient and Hessian: Example

o Let f(x,y) = x>y* + & — In(y)

» Find

> Find gradient of f

> Find Hessian of f

’f

dx?

o*f
ox dy

9/40



Taylor Approximation

* Taylor Approximation: Linear approximation of a function around point x = a

f&) = fl@) + f(@)(x —a) + %f”(a)(x —a)’ + -

=Y = @ - o
n=0"""
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* Taylor Approximation: Linear approximation of a function around point x = a

f&) = fl@) + f(@)(x —a) + %f”(a)(x —a)’ +

Y, = fP (@) - ay
n=0"""

> You can verify this by taking derivatives on both sides of the equation repeatedly
* For multivariate function f : R” — R, we can approximate (omit terms (x — a)"
where n > 3 since they shrinks faster)

f&® = fla)+Vf@x-a)+ (X —a) H(a)(x - a),

(1xn) (nx1) (1xn) (nxn) (nx1)

where V f(a) and H(a) are the gradient and Hessian evaluated at the vector a
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Why convex implies local minimum?
* By Taylor approximation of univariate function
’ 1 ”
f@) = f@) = f@x —a)+ 2 f(a)x - a)’

=0-(x= @)+ f"(@(x —a)

> 0if f”(a) >0 (so f”(a) > 0= f(x)> f(a) = f(a)min)
< 0if f”(a) <0 (so f”(a) < 0= f(x) < f(a) = f(a) max)
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Why convex implies local minimum?

* By Taylor approximation of univariate function
f) - fl@ = f/(@x—-a)+ %f”(a)(x —a)’
=0-(x= @)+ f"(@(x —a)

> 0if f”(a) >0 (so f”(a) > 0= f(x)> f(a) = f(a)min)
< 0if f”(a) <0 (so f”(a) < 0= f(x) < f(a) = f(a) max)

* Similarly, for multivariate functions we want
f09 - f(@) = Vf(@)(x — ) + 2(x ) H(@)(x - a)
= ~(x—a) H@)(x ~a)

> 0 to get mininum, we need to have that u' H(a)u > 0 for all u
< 0 to get maximum, we need to have thatu' H(a)u < 0 forall y,,,



Positive and Negative Definite Matrix

Definition

Consider an x n matrix A. If, for all x € R"” where x # 0:
XxTAx > 0, we say A is positive definite;
x'"Ax < 0, wesay A is negative definite.

If x"Ax > 0 for some x and x' Ax < 0 for other X, then we say A is indefinite.
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Solving Multivariate Optimization

* Calculate gradient (First Order Condition)

> Setit equal to zero, solve system of equations to get critical values a
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Solving Multivariate Optimization

* Calculate gradient (First Order Condition)
> Setit equal to zero, solve system of equations to get critical values a
* Calculate Hessian (Second Order Condition)

» Evaluate Hessian at critical values a
» For Hessian H = H(a) thatis 2 x 2

* Ifdet(H) > 0 and H;; > 0 = positive definite = a is local minimum
* Ifdet(H) > 0 and H;; < 0= negative definite = a is local maximum
* Ifdet(H) < 0 = indefinite = a can be a saddle point

* Ifdet(H) = 0 = inconclusive

* Compare to values at the boundary (if solving global extremum)
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Multivariate Optimization: Example

* Find the local extremum of

FCep,x2) = 30x; + 2)? + 4(xy + 4)*
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Multivariate Optimization: Example

* Suppose legislators are considering legislation x € R2. And suppose legislator i has
utility function U; : R? — R,

Ux) = —(x - .U1)2 —(x — ﬂz)z-

What is legislator i's optimal policy?
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Why study integral calculus?

* Backout f from f’, consider the graphs
> If f'(x) = 2, whatis f(x)?
> If f(x) = 2x, whatis f(x)?
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Why study integral calculus?

* Backout f from f’, consider the graphs
> If f'(x) = 2, whatis f(x)?
> If f(x) = 2x, whatis f(x)?
* Find the area function (A(x)) under the curve of a function f(x)

Alx+h) = A(x)+ f(x)-h

> A concrete example

F(x) (CDF) F'(x) (PDF)
1.00 - 1.00 -
075~ ~ 075~
X 050 - _/_ X 8;5)
B 0.25- B 0.25-
0.00 - ; : 0.00 = s— —
0 1 0 1

16/40



Antiderivative

Definition
The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,
d F(x)
dx

F'(x) = f).
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Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,

d F(x)

i) = 222 = f(x).

* Antiderivative is doing the reverse of the derivative
* Find the antiderivative of the following:

> f(x)=x

> fl) =1

X
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Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
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The antiderivative of a function f is a function whose derivative is f.

We often denote the antiderivative of f as F, i.e,

o = 200

= f().

* Antiderivative is doing the reverse of the derivative
* Find the antiderivative of the following:

> f) =
> f(x)_;
> f(X)—1
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Antiderivative

Definition

The antiderivative of a function f is a function whose derivative is f.
We often denote the antiderivative of f as F, i.e,

o = 200

= f().

* Antiderivative is doing the reverse of the derivative
* Find the antiderivative of the following:

> f(x)—x
> f(x)_;
> f) =5
> f(x)—363x

* How do we write the antiderivative in a more systematic way?
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Indefinite Integral

Definition

The antiderivative of f(x) can also be written as

Fx) = j At

which is called the indefinite integral. Thus, we have that

d F(x
0 _4 [ sax = s
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Indefinite Integral

Definition

The antiderivative of f(x) can also be written as

Fx) = j At

which is called the indefinite integral. Thus, we have that

d F(x
0 _4 [ sax = s

e Useful heuristic: % and f dx cancels out

» Differentiation and integration are doing the reverse works
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Indefinite Integral

Definition

The antiderivative of f(x) can also be written as

Fx) = j At

which is called the indefinite integral. Thus, we have that

dF(x) d
-4 J ) = )

* Useful heuristic: % and f dx cancels out
» Differentiation and integration are doing the reverse works
* Some would also denote that (useful for probability, e.g. F(x) is the CDF of X)
d F(x) = f(x)dx

18/40



Why denote this way? Riemann Sum

* Suppose we would like to find the area under the curve f(x)
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Why denote this way? Riemann Sum

* Suppose we would like to find the area under the curve f(x)

* Let the width be denoted Ax, then area of each rectangle is f(x;)Ax
> f(x;) is the value of the function at each evenly spaced point

* Then the total areaiis ) ; f(x;)Ax

Ax =1 Ax =0.2
100 - 100 -
75 = 75 =
50 - 50 -
25= 25 =
O 1 L] T L] T 0 1 1]
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X



Why denote this way? Riemann Sum

* This sum converges to the true area as Ax — 0, so we denote

Al}icr_n)o z,: f(x)Ax = Jf(x) dx
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Why denote this way? Riemann Sum
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Jdim, 3 ) x = j (0 dx

* Indefinite integral: area as a function of x, which is a function

J f(x)dx
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Why denote this way? Riemann Sum
* This sum converges to the true area as Ax — 0, so we denote
dim, 3 fe e = [ feods

* Indefinite integral: area as a function of x, which is a function

[ reax
* Definite integral: area from x = a to x = b, which is a fixed number

Lb f(x)dx
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Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and Il.)

Let f(x) be continuous over an interval [a, b].
. If we define the function F(x) defined by

F(x) = J'ax f(x)dx,

we have that F’(x) = f(x) forall x in [a, b].
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Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and Il.)

Let f(x) be continuous over an interval [a, b].
. If we define the function F(x) defined by

Hﬂ=fﬂﬂw,

we have that F’(x) = f(x) forall x in [a, b].
Il. Let F(x) be any antiderivative of f(x), then

a

b
[ sax = Fe) - @ = P

x=b

* Part . tells you a way to define the antiderivative F(x)
* Part l. tells you how to evaluate the definite integral: plug-in to F(x)
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Fundamental Theorem of Calculus: Example

+ f(x) = x%, whatis F(x)?
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Fundamental Theorem of Calculus: Example

+ f(x) = x%, whatis F(x)?
* F(x) = %x3 +C
* What about

2
J x2dx
1
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Fundamental Theorem of Calculus: Example

+ f(x) = x%, whatis F(x)?
* F(x) = %xg’ +C
* What about

2
J x2dx
1
2

- F(x) T F(2)—F(1) = [3@° +C] - [0)*+C] =8 -3 =2

22/40



Properties of Definite Integral

1. There is no area below a point:

La flx)dx=0
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Properties of Definite Integral
1. There is no area below a point: .
J f(x)dx=0
a
2. Reversing the limits changes the sign of the integral:

L f(x)dx = — La f(x)dx

3. Sums can be separated into their own integrals:
b b

b
j [ f () + fg(Oldx = @ J Fdx + B j o(x) dx

a
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Properties of Definite Integral

1. There is no area below a point: .
J f(x)dx=0
a
2. Reversing the limits changes the sign of the integral:

L f(x)dx = — La f(x)dx

3. Sums can be separated into their own integrals:
b b

b
j [ f () + fg(Oldx = @ j Fdx + B j o(x) dx

a

4. Areas can be combined as long as limits are linked:

L flx)dx + Lc f(x)dx = LC f(x)dx

23/40



Rules of Integration

Rules of Integration

Jk dx =kx+C
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Rules of Integration

Rules of Integration
Jk dx =kx+C
Jx"dx: Lx”“+C (n#-1)
n+1
Jx_ldxzjldx:ln|x|+c
x
J'exdx=6x+C

J In(x)dx = xIn(x) —x +C

(Power)
(Notice the | - |)
(Exponential)

(Logarithm)

24/40



Integration: Examples

* Find

J dx
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Integration: Examples
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Integration: Examples

* Find

f Jxdx
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Integration: Examples

* Find .
J (2x + 1dx
1
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Integration by Substitution

* Recall the Chain Rule: Let u = h(x), then (f(u))’ = f’'(u) - h’(x)
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* Recall the Chain Rule: Let u = h(x), then (f(u))’ = f’'(u) - h’(x)
* Do the reverse in integration

* Suppose g(x) is complex and hard to integrate

* Find a function u = u(x) such that

8(x) = fu(x)) v’ (x),

then we have

Jg(x) dx = Jf(u(x)) w (x) dx = J f(u)du = Flu(x)] + C
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o dx
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Integration by Substitution

* Recall the Chain Rule: Let u = h(x), then (f(u))’ = f’'(u) - h’(x)
* Do the reverse in integration

* Suppose g(x) is complex and hard to integrate

* Find a function u = u(x) such that

¢(0) = F(uG) o (x),
then we have
jg(x) dx = Jf(u(x)) w (x) dx = J f(u)du = Flu(x)] + C

du
o dx

* Key: Substitute g(x) dx into some f(u) du, integrate with respect to u
> For definite integrals, remember to change the upper/lower bounds from x to u
> For indefinite integrals, remember to substitute u back to x
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Integration by Substitution

* Recall the Chain Rule: Let u = h(x), then (f(u))’ = f’'(u) - h’(x)
* Do the reverse in integration

* Suppose g(x) is complex and hard to integrate

* Find a function u = u(x) such that

8(x) = fu(x)) v’ (x),

then we have

jg(x) dx = jf(u(x)) w (x) dx = J f(u)du = Flu(x)] + C

du

E -dx

* Key: Substitute g(x) dx into some f(u) du, integrate with respect to u
> For definite integrals, remember to change the upper/lower bounds from x to u
> For indefinite integrals, remember to substitute u back to x

* Useful for composite functions (square root, fractions, power, etc)
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Integration by Substitution: Example

* Integrate g(x) = x%J/x + 1
> Letu = x + 1, then du = dx, substitute into [ g(x)dx
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Integration by Substitution: Example

2

* Integrate g(x) = er T2

> Letu = —7,then du = —x dx, substitute into f g(x)dx
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Integration by Substitution: Example

5
J x*eX dx

* Find

» Letu = x°, thendu = 5x* dx
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Integration by Substitution: Example

* Show that [ a*dx = - ( 5 +C
» Again, a* = lnd" = pxlna

» Letu = xIlnag, thendu = Inadx
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Integration by Parts

e Letu = u(x)and v = v(x), recaII the Product Rule

—(u )—uﬂ+ du
dx dx dx
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Integration by Parts

e Letu = u(x)and v = v(x), recaII the Product Rule

—(u )—u@+ du
dx dx  dx

* Integrating this and rearrange we get
dv du
u—dx=uv— | v—dx
J dx J' dx

J u(x)v'(x)dx = u(x) v(x) — J v(x)u'(x)dx
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Integration by Parts

e Letu = u(x)and v = v(x), recaII the Product Rule

—(u )—u@%— du
dx dx  dx

* Integrating this and rearrange we get
Juj—idxzuv—fvj—idx
J u(x)v'(x)dx = u(x) v(x) — J v(x)u'(x)dx

* Simpler form
b

b b
Judvzuv—fvdu and J udv =uv
X=a

— J vdu
X=a X=a
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Integration by Parts

e Letu = u(x)and v = v(x), recaII the Product Rule

—(u )—u@%— du
dx dx dx

* Integrating this and rearrange we get
Juj—idxzuv—fvj—idx
J u(x)v'(x)dx = u(x) v(x) — J v(x)u'(x)dx

* Simpler form
b b b

Judvzuv—fvdu and J udv =uv —J vdu
x=a x=a x=a

* Key: Find u and dv such that g(x) dx = udv, then use the above formula
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Integration by Parts

e Letu = u(x)and v = v(x), recaII the Product Rule

—(u )—u@%— du
dx dx dx

* Integrating this and rearrange we get
Juj—idxzuv—fvj—idx
J u(x)v'(x)dx = u(x) v(x) — J v(x)u'(x)dx

* Simpler form
b b b

Judvzuv—fvdu and J udv =uv —J vdu
x=a x=a x=a

* Key: Find u and dv such that g(x) dx = udv, then use the above formula
* Useful for products of x and e* or In x

34/40



Integration by Parts: Examples

* Find
4

jxex dx and J xe* dx
1

» Letu = xanddv = e¥dx
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Integration by Parts: Examples

* Showthat [Inxdx =xlnx —x+C
» Letu =Inxanddv = idx

* Show that [ log,(x) dx = xIn()—x , -

In(a)

> Again, log,(x) = Inx

Ina
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Integration by Parts: Harder Examples

* Find
J' x"e? dx

> Letu = x"anddv = e* dx
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Integration by Parts: Harder Examples

* Find
J e dx

2
> Letu = x?anddv = xe™ dx
> Use substitutiont = —x? ondv to getv
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Improper Integral

* Improper Integral: Definite integrals but boundaries involve £oo
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Improper Integral

* Improper Integral: Definite integrals but boundaries involve £oo

* How to evaluate? Take limits

00 t
J f(x)dx = tlggJ, f(x)dx
b -
J f(x)dx = lim J f(x)dx
_ oo t——o0 t

[o0]

t
J f(x)dxztli)rglosli)r_nooj f(x)dx

N
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Improper Integral

* Improper Integral: Definite integrals but boundaries involve £oo
* How to evaluate? Take limits

00 t

J f(x)dx = tlggoj f(x)dx
b -

J f(x)dx = lim J f(x)dx
00 t——o0 t

oo t
J f(x)dxztli)rglosli)r_nooj f(x)dx

N

* Many applications (infinite time-horizon bargaining, exponential distribution, etc)
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Improper Integral: Example

* Let S be a fixed constant. Find

[o0]

1 _x
—e Fdx
J, 7

> Note: This is the probability density function of the exponential distribution
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