
Multivariate Differentiation
& Integral Calculus

Keng-Chi Chang

Department of Political Science
University of California San Diego

September 9, 2022

1 / 40



What about functions with several variables?

• So far, we discussed functions of single variable

𝑓 ∶ ℝ → ℝ

• Function of 𝑛 variables 𝑥1, ⋯ , 𝑥𝑛
𝑓 ∶ ℝ𝑛 → ℝ1

• e.g.

▶ 𝑓 (𝑥, 𝑦 , 𝑧) = 3𝑥𝑦 − 𝑦2𝑥 + 2
▶ 𝑓 (𝐱) = 𝑓 (𝑥1, ⋯ , 𝑥5) = 𝑥1𝑥3 − 𝑥2𝑥5
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Partial Derivatives

• How do we find the rate of change for a function with several variables?

• Partial derivatives provides one solution by treating all other variables equal
(“ceteris paribus”)

𝜕
𝜕𝑥 𝑓 (𝑥, 𝑦) ≡ limℎ→0

𝑓 (𝑥 + ℎ, 𝑦) − 𝑓 (𝑥, 𝑦)
ℎ

• How to calculate: Treat every variable other than 𝑥 as a constant, and just take the
derivative with respect to 𝑥

• Written as
𝜕
𝜕𝑥 𝑓 (𝑥, 𝑦) or

𝜕𝑓
𝜕𝑥 or 𝜕𝑥𝑓 or 𝑓𝑥

• Higher-order partial derivatives

𝜕2𝑓
𝜕𝑥2 ≡ 𝜕2𝑓

𝜕𝑥 𝜕𝑥 ≡ 𝜕
𝜕𝑥 (𝜕𝑓𝜕𝑥 ) ,

𝜕2𝑓
𝜕𝑥 𝜕𝑦 ≡ 𝜕

𝜕𝑥 (𝜕𝑓𝜕𝑦 )
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Partial Derivatives: Examples

• Find all the partial derivatives of

𝑓 (𝑥, 𝑧) = 𝑥𝑧
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Partial Derivatives: Examples

• 𝑓 (𝑥1, 𝑥2, 𝑥3) = 6 + 3𝑥1 + 5
2𝑥2 + 𝑥23
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Partial Derivatives: Examples

• 𝑓 (𝑥, 𝑧) = 3𝑧3 − 3𝑧2 + √𝑧 + 𝑥
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Partial Derivatives: Examples

• In a regression context, let

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑧 + 𝛽3𝑥𝑧 + 𝑒,
find 𝜕𝑦

𝜕𝑥 and 𝜕𝑦
𝜕𝑧

7 / 40



Gradient Vector and Hessian Matrix

For multivariate function 𝑓 (𝑥1, ⋯ , 𝑥𝑛)
• Gradient: The (row) vector of first-order partial derivatives

∇𝑓 ≡ [ 𝜕𝑓𝜕𝑥1
𝜕𝑓
𝜕𝑥2

𝜕𝑓
𝜕𝑥3 ⋯] ∈ ℝ1×𝑛

▶ Gradient points in the direction of the steepest rate of increase
• Hessian: The matrix of second-order partial derivatives

∇2𝑓 ≡ 𝐇𝑓 ≡

⎡⎢⎢⎢⎢⎢⎢
⎣

𝜕2𝑓
𝜕𝑥21

𝜕2𝑓
𝜕𝑥1 𝜕𝑥2

⋯ 𝜕2𝑓
𝜕𝑥1 𝜕𝑥𝑛

𝜕2𝑓
𝜕𝑥2 𝜕𝑥1

𝜕2𝑓
𝜕𝑥22

⋯ 𝜕2𝑓
𝜕𝑥2 𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛 𝜕𝑥1
𝜕2𝑓

𝜕𝑥𝑛 𝜕𝑥2
⋯ 𝜕2𝑓

𝜕𝑥2𝑛

⎤⎥⎥⎥⎥⎥⎥
⎦

∈ ℝ𝑛×𝑛

▶ Hessian describes the local curvature of a function of many variables
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Gradient and Hessian: Example

• Let 𝑓 (𝑥, 𝑦) = 𝑥3𝑦4 + 𝑒𝑥 − ln(𝑦)
▶ Find

𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕2𝑓
𝜕𝑥2 ,

𝜕2𝑓
𝜕𝑥 𝜕𝑦

▶ Find gradient of 𝑓

▶ Find Hessian of 𝑓

9 / 40



Taylor Approximation

• Taylor Approximation: Linear approximation of a function around point 𝑥 = 𝑎
𝑓 (𝑥) ≈ 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 1

2𝑓
″(𝑎)(𝑥 − 𝑎)2 + ⋯

=
∞
∑
𝑛=0

1
𝑛!𝑓

(𝑛)(𝑎)(𝑥 − 𝑎)𝑛

▶ You can verify this by taking derivatives on both sides of the equation repeatedly

• For multivariate function 𝑓 ∶ ℝ𝑛 → ℝ, we can approximate (omit terms (𝑥 − 𝑎)𝑛
where 𝑛 ≥ 3 since they shrinks faster)

𝑓 (𝐱) ≈ 𝑓 (𝐚) + ∇𝑓 (𝐚)
(1×𝑛)

(𝐱 − 𝐚)
(𝑛×1)

+ 1
2(𝐱 − 𝐚)⊤

(1×𝑛)
𝐇(𝐚)
(𝑛×𝑛)

(𝐱 − 𝐚)
(𝑛×1)

,

where ∇𝑓 (𝐚) and𝐇(𝐚) are the gradient and Hessian evaluated at the vector 𝐚
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• For multivariate function 𝑓 ∶ ℝ𝑛 → ℝ, we can approximate (omit terms (𝑥 − 𝑎)𝑛
where 𝑛 ≥ 3 since they shrinks faster)

𝑓 (𝐱) ≈ 𝑓 (𝐚) + ∇𝑓 (𝐚)
(1×𝑛)

(𝐱 − 𝐚)
(𝑛×1)

+ 1
2(𝐱 − 𝐚)⊤

(1×𝑛)
𝐇(𝐚)
(𝑛×𝑛)

(𝐱 − 𝐚)
(𝑛×1)

,

where ∇𝑓 (𝐚) and𝐇(𝐚) are the gradient and Hessian evaluated at the vector 𝐚
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Why convex implies local minimum?

• By Taylor approximation of univariate function

𝑓 (𝑥) − 𝑓 (𝑎) ≈ 𝑓 ′(𝑎)(𝑥 − 𝑎) + 1
2𝑓

″(𝑎)(𝑥 − 𝑎)2

= 0 ⋅ (𝑥 − 𝑎) + 1
2𝑓

″(𝑎)(𝑥 − 𝑎)2

{ > 0 if 𝑓 ″(𝑎) > 0 (so 𝑓 ″(𝑎) > 0 ⇒ 𝑓 (𝑥) > 𝑓 (𝑎) ⇒ 𝑓 (𝑎)min)
< 0 if 𝑓 ″(𝑎) < 0 (so 𝑓 ″(𝑎) < 0 ⇒ 𝑓 (𝑥) < 𝑓 (𝑎) ⇒ 𝑓 (𝑎)max)

• Similarly, for multivariate functions we want

𝑓 (𝐱) − 𝑓 (𝐚) ≈ ∇𝑓 (𝐚)(𝐱 − 𝐚) + 1
2(𝐱 − 𝐚)⊤𝐇(𝐚)(𝐱 − 𝐚)

= 1
2(𝐱 − 𝐚)⊤𝐇(𝐚)(𝐱 − 𝐚)

{ > 0 to get mininum, we need to have that 𝐮⊤𝐇(𝐚)𝐮 > 0 for all 𝐮
< 0 to get maximum, we need to have that 𝐮⊤𝐇(𝐚)𝐮 < 0 for all 𝐮
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Positive and Negative Definite Matrix

Definition
Consider a 𝑛 × 𝑛matrix𝐀. If, for all 𝐱 ∈ ℝ𝑛 where 𝐱 ≠ 𝟎:

𝐱⊤𝐀𝐱 > 0 , we say𝐀 is positive definite;

𝐱⊤𝐀𝐱 < 0 , we say𝐀 is negative definite.

If 𝐱⊤𝐀𝐱 > 0 for some 𝐱 and 𝐱⊤𝐀𝐱 < 0 for other 𝐱, then we say𝐀 is indefinite.

Property

For a 2 × 2matrix𝐀 = [𝐴11 𝐴12
𝐴21 𝐴22

]:
• If det(𝐀) > 0 and𝐴11 > 0, then𝐀 is positive definite

• If det(𝐀) > 0 and𝐴11 < 0, then𝐀 is negative definite

• If det(𝐀) < 0, then𝐀 is indefinite
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Solving Multivariate Optimization

• Calculate gradient (First Order Condition)

▶ Set it equal to zero, solve system of equations to get critical values 𝐚

• Calculate Hessian (Second Order Condition)

▶ Evaluate Hessian at critical values 𝐚
▶ For Hessian𝐻 = 𝐇(𝐚) that is 2 × 2

• If det(𝐻) > 0 and𝐻11 > 0⇒ positive definite⇒𝐚 is local minimum
• If det(𝐻) > 0 and𝐻11 < 0⇒ negative definite⇒𝐚 is local maximum
• If det(𝐻) < 0⇒ indefinite⇒𝐚 can be a saddle point
• If det(𝐻) = 0⇒ inconclusive

• Compare to values at the boundary (if solving global extremum)
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Multivariate Optimization: Example

• Find the local extremum of

𝑓 (𝑥1, 𝑥2) = 3(𝑥1 + 2)2 + 4(𝑥2 + 4)2

14 / 40



Multivariate Optimization: Example

• Suppose legislators are considering legislation 𝐱 ∈ ℝ2. And suppose legislator 𝑖 has
utility function 𝑈𝑖 ∶ ℝ2 → ℝ,

𝑈𝑖(𝐱) = −(𝑥1 − 𝜇1)2 − (𝑥2 − 𝜇2)2.
What is legislator 𝑖’s optimal policy?
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Why study integral calculus?

• Back out 𝑓 from 𝑓 ′, consider the graphs
▶ If 𝑓 ′(𝑥) = 2, what is 𝑓 (𝑥)?
▶ If 𝑓 ′(𝑥) = 2𝑥 , what is 𝑓 (𝑥)?

• Find the area function (𝐴(𝑥)) under the curve of a function 𝑓 (𝑥)
𝐴(𝑥 + ℎ) ≈ 𝐴(𝑥) + 𝑓 (𝑥) ⋅ ℎ

▶ A concrete example
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Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative
• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥
▶ 𝑓 (𝑥) = 1

𝑥▶ 𝑓 (𝑥) = 1
𝑥2▶ 𝑓 (𝑥) = 3𝑒3𝑥

• How do we write the antiderivative in a more systematic way?

17 / 40



Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative

• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥
▶ 𝑓 (𝑥) = 1

𝑥▶ 𝑓 (𝑥) = 1
𝑥2▶ 𝑓 (𝑥) = 3𝑒3𝑥

• How do we write the antiderivative in a more systematic way?

17 / 40



Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative
• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥

▶ 𝑓 (𝑥) = 1
𝑥▶ 𝑓 (𝑥) = 1
𝑥2▶ 𝑓 (𝑥) = 3𝑒3𝑥

• How do we write the antiderivative in a more systematic way?

17 / 40



Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative
• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥
▶ 𝑓 (𝑥) = 1

𝑥

▶ 𝑓 (𝑥) = 1
𝑥2▶ 𝑓 (𝑥) = 3𝑒3𝑥

• How do we write the antiderivative in a more systematic way?

17 / 40



Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative
• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥
▶ 𝑓 (𝑥) = 1

𝑥▶ 𝑓 (𝑥) = 1
𝑥2

▶ 𝑓 (𝑥) = 3𝑒3𝑥
• How do we write the antiderivative in a more systematic way?

17 / 40



Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative
• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥
▶ 𝑓 (𝑥) = 1

𝑥▶ 𝑓 (𝑥) = 1
𝑥2▶ 𝑓 (𝑥) = 3𝑒3𝑥

• How do we write the antiderivative in a more systematic way?

17 / 40



Antiderivative

Definition
The antiderivative of a function 𝑓 is a functionwhose derivative is 𝑓 .
We often denote the antiderivative of 𝑓 as 𝐹 , i.e,

𝐹 ′(𝑥) = 𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑓 (𝑥).

• Antiderivative is doing the reverse of the derivative
• Find the antiderivative of the following:
▶ 𝑓 (𝑥) = 𝑥
▶ 𝑓 (𝑥) = 1

𝑥▶ 𝑓 (𝑥) = 1
𝑥2▶ 𝑓 (𝑥) = 3𝑒3𝑥

• How do we write the antiderivative in a more systematic way?
17 / 40



Indefinite Integral

Definition
The antiderivative of 𝑓 (𝑥) can also be written as

𝐹(𝑥) = ∫ 𝑓 (𝑥) 𝑑𝑥,
which is called the indefinite integral. Thus, we have that

𝑑 𝐹(𝑥)
𝑑 𝑥 = 𝑑

𝑑 𝑥 ∫ 𝑓 (𝑥) 𝑑𝑥 = 𝑓 (𝑥).

• Useful heuristic: 𝑑
𝑑 𝑥 and ∫ 𝑑𝑥 cancels out

▶ Differentiation and integration are doing the reverse works

• Some would also denote that (useful for probability, e.g. 𝐹(𝑥) is the CDF of𝑋 )

𝑑 𝐹(𝑥) = 𝑓 (𝑥) 𝑑𝑥

18 / 40
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Why denote this way? Riemann Sum

• Suppose we would like to find the area under the curve 𝑓 (𝑥)

• Let the width be denotedΔ𝑥 , then area of each rectangle is 𝑓 (𝑥𝑖)Δ𝑥
▶ 𝑓 (𝑥𝑖) is the value of the function at each evenly spaced point

• Then the total area is∑𝑖 𝑓 (𝑥𝑖)Δ𝑥
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Why denote this way? Riemann Sum

• This sum converges to the true area asΔ𝑥 → 0, so we denote

limΔ𝑥→0∑𝑖
𝑓 (𝑥𝑖) Δ𝑥 = ∫ 𝑓 (𝑥) 𝑑𝑥

• Indefinite integral: area as a function of 𝑥 , which is a function

∫𝑓 (𝑥) 𝑑𝑥

• Definite integral: area from 𝑥 = 𝑎 to 𝑥 = 𝑏, which is a fixed number

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥
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Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and II.)

Let 𝑓 (𝑥) be continuous over an interval [𝑎, 𝑏].
I. If we define the function 𝐹(𝑥) defined by

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓 (𝑥) 𝑑𝑥,

we have that 𝐹 ′(𝑥) = 𝑓 (𝑥) for all 𝑥 in [𝑎, 𝑏].

II. Let 𝐹(𝑥) be any antiderivative of 𝑓 (𝑥), then

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) ≡ 𝐹(𝑥)|

𝑎

𝑥=𝑏
.

• Part I. tells you a way to define the antiderivative 𝐹(𝑥)
• Part II. tells you how to evaluate the definite integral: plug-in to 𝐹(𝑥)

21 / 40



Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and II.)

Let 𝑓 (𝑥) be continuous over an interval [𝑎, 𝑏].
I. If we define the function 𝐹(𝑥) defined by

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓 (𝑥) 𝑑𝑥,

we have that 𝐹 ′(𝑥) = 𝑓 (𝑥) for all 𝑥 in [𝑎, 𝑏].
II. Let 𝐹(𝑥) be any antiderivative of 𝑓 (𝑥), then

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) ≡ 𝐹(𝑥)|

𝑎

𝑥=𝑏
.

• Part I. tells you a way to define the antiderivative 𝐹(𝑥)
• Part II. tells you how to evaluate the definite integral: plug-in to 𝐹(𝑥)

21 / 40



Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (Parts I. and II.)

Let 𝑓 (𝑥) be continuous over an interval [𝑎, 𝑏].
I. If we define the function 𝐹(𝑥) defined by

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓 (𝑥) 𝑑𝑥,

we have that 𝐹 ′(𝑥) = 𝑓 (𝑥) for all 𝑥 in [𝑎, 𝑏].
II. Let 𝐹(𝑥) be any antiderivative of 𝑓 (𝑥), then

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) ≡ 𝐹(𝑥)|

𝑎

𝑥=𝑏
.

• Part I. tells you a way to define the antiderivative 𝐹(𝑥)
• Part II. tells you how to evaluate the definite integral: plug-in to 𝐹(𝑥)

21 / 40



Fundamental Theorem of Calculus: Example

• 𝑓 (𝑥) = 𝑥2, what is 𝐹(𝑥)?

• 𝐹 (𝑥) = 1
3𝑥3 + 𝐶

• What about

∫
2

1
𝑥2𝑑𝑥

• 𝐹(𝑥)|
2

𝑥=1
= 𝐹(2) − 𝐹(1) = [13(2)3 + 𝐶] − [13(1)3 + 𝐶] = 8

3 −
1
3 = 7

3
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Properties of Definite Integral
1. There is no area below a point:

∫
𝑎

𝑎
𝑓 (𝑥) 𝑑𝑥 = 0

2. Reversing the limits changes the sign of the integral:

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = −∫

𝑎

𝑏
𝑓 (𝑥) 𝑑𝑥

3. Sums can be separated into their own integrals:

∫
𝑏

𝑎
[𝛼𝑓 (𝑥) + 𝛽𝑔(𝑥)] 𝑑𝑥 = 𝛼 ∫

𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 + 𝛽 ∫

𝑏

𝑎
𝑔(𝑥) 𝑑𝑥

4. Areas can be combined as long as limits are linked:

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 + ∫

𝑐

𝑏
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑐

𝑎
𝑓 (𝑥) 𝑑𝑥
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Rules of Integration

Rules of Integration

∫𝑘 𝑑𝑥 = 𝑘𝑥 + 𝐶

∫ 𝑥𝑛 𝑑𝑥 = 1
𝑛 + 1𝑥

𝑛+1 + 𝐶 ( 𝑛 ≠ −1 ) (Power)

∫𝑥−1 𝑑𝑥 = ∫ 1
𝑥 𝑑𝑥 = ln |𝑥 | + 𝐶 (Notice the | ⋅ |)

∫ 𝑒𝑥 𝑑𝑥 = 𝑒𝑥 + 𝐶 (Exponential)

∫ ln(𝑥) 𝑑𝑥 = 𝑥 ln(𝑥) − 𝑥 + 𝐶 (Logarithm)
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Integration: Examples

• Find

∫𝑥3𝑑𝑥
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Integration: Examples

• Find

∫ 1
𝑥5 𝑑𝑥

26 / 40



Integration: Examples

• Find

∫√𝑥𝑑𝑥
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Integration: Examples

• Find

∫
4

1
(2𝑥 + 1)𝑑𝑥
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Integration by Substitution

• Recall the Chain Rule: Let 𝑢 = ℎ(𝑥), then (𝑓 (𝑢))′ = 𝑓 ′(𝑢) ⋅ ℎ′(𝑥)

• Do the reverse in integration
• Suppose 𝑔(𝑥) is complex and hard to integrate
• Find a function 𝑢 = 𝑢(𝑥) such that

𝑔(𝑥) = 𝑓 (𝑢(𝑥)) 𝑢′(𝑥),
then we have

∫𝑔(𝑥) 𝑑𝑥 = ∫ 𝑓 (𝑢(𝑥)) 𝑢′(𝑥) 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑑𝑢
𝑑𝑥 ⋅ 𝑑𝑥

= ∫ 𝑓 (𝑢) 𝑑𝑢 = 𝐹[𝑢(𝑥)] + 𝐶

• Key: Substitute 𝑔(𝑥) 𝑑𝑥 into some 𝑓 (𝑢) 𝑑𝑢, integrate with respect to 𝑢
▶ For definite integrals, remember to change the upper/lower bounds from 𝑥 to 𝑢
▶ For indefinite integrals, remember to substitute 𝑢 back to 𝑥

• Useful for composite functions (square root, fractions, power, etc)
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∫𝑔(𝑥) 𝑑𝑥 = ∫ 𝑓 (𝑢(𝑥)) 𝑢′(𝑥) 𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑑𝑢
𝑑𝑥 ⋅ 𝑑𝑥

= ∫ 𝑓 (𝑢) 𝑑𝑢 = 𝐹[𝑢(𝑥)] + 𝐶

• Key: Substitute 𝑔(𝑥) 𝑑𝑥 into some 𝑓 (𝑢) 𝑑𝑢, integrate with respect to 𝑢
▶ For definite integrals, remember to change the upper/lower bounds from 𝑥 to 𝑢
▶ For indefinite integrals, remember to substitute 𝑢 back to 𝑥

• Useful for composite functions (square root, fractions, power, etc)
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Integration by Substitution: Example

• Integrate 𝑔(𝑥) = 𝑥2√𝑥 + 1
▶ Let 𝑢 = 𝑥 + 1, then 𝑑𝑢 = 𝑑𝑥 , substitute into ∫ 𝑔(𝑥) 𝑑𝑥
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Integration by Substitution: Example

• Integrate 𝑔(𝑥) = 1
√2𝜋 𝑥𝑒

− 𝑥2
2

▶ Let 𝑢 = − 𝑥2
2 , then 𝑑𝑢 = −𝑥 𝑑𝑥 , substitute into ∫ 𝑔(𝑥) 𝑑𝑥

31 / 40



Integration by Substitution: Example

• Find

∫𝑥4𝑒𝑥5𝑑𝑥
▶ Let 𝑢 = 𝑥5, then 𝑑𝑢 = 5𝑥4 𝑑𝑥
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Integration by Substitution: Example

• Show that ∫ 𝑎𝑥𝑑𝑥 = 𝑎𝑥
ln(𝑎) + 𝐶

▶ Again, 𝑎𝑥 = 𝑒ln 𝑎𝑥 = 𝑒𝑥 ln 𝑎
▶ Let 𝑢 = 𝑥 ln 𝑎, then 𝑑𝑢 = ln 𝑎 𝑑𝑥
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Integration by Parts
• Let 𝑢 = 𝑢(𝑥) and 𝑣 = 𝑣(𝑥), recall the Product Rule

𝑑
𝑑𝑥 (𝑢𝑣) = 𝑢 𝑑𝑣

𝑑𝑥 + 𝑣 𝑑𝑢
𝑑𝑥

• Integrating this and rearrange we get

∫𝑢 𝑑𝑣
𝑑𝑥 𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

𝑑𝑥 𝑑𝑥

∫ 𝑢(𝑥) 𝑣 ′(𝑥) 𝑑𝑥 = 𝑢(𝑥) 𝑣(𝑥) − ∫ 𝑣(𝑥) 𝑢′(𝑥) 𝑑𝑥
• Simpler form

∫𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢 and ∫
𝑏

𝑥=𝑎
𝑢 𝑑𝑣 = 𝑢𝑣 |

𝑏

𝑥=𝑎
− ∫

𝑏

𝑥=𝑎
𝑣 𝑑𝑢

• Key: Find 𝑢 and 𝑑𝑣 such that 𝑔(𝑥) 𝑑𝑥 = 𝑢 𝑑𝑣 , then use the above formula
• Useful for products of 𝑥 and 𝑒𝑥 or ln 𝑥
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Integration by Parts: Examples

• Find

∫𝑥𝑒𝑥 𝑑𝑥 and ∫
4

1
𝑥𝑒𝑥 𝑑𝑥

▶ Let 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒𝑥 𝑑𝑥
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Integration by Parts: Examples

• Show that ∫ ln 𝑥 𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶
▶ Let 𝑢 = ln 𝑥 and 𝑑𝑣 = 1

𝑥 𝑑𝑥

• Show that ∫ log𝑎(𝑥) 𝑑𝑥 = 𝑥 ln(𝑥)−𝑥
ln(𝑎) + 𝐶

▶ Again, log𝑎(𝑥) = ln 𝑥
ln 𝑎
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Integration by Parts: Harder Examples

• Find

∫𝑥𝑛𝑒𝑎𝑥 𝑑𝑥
▶ Let 𝑢 = 𝑥𝑛 and 𝑑𝑣 = 𝑒𝑎𝑥 𝑑𝑥
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Integration by Parts: Harder Examples

• Find

∫𝑥3𝑒−𝑥2 𝑑𝑥
▶ Let 𝑢 = 𝑥2 and 𝑑𝑣 = 𝑥𝑒−𝑥2 𝑑𝑥
▶ Use substitution 𝑡 = −𝑥2 on 𝑑𝑣 to get 𝑣

38 / 40



Improper Integral

• Improper Integral: Definite integrals but boundaries involve±∞

• How to evaluate? Take limits

∫
∞

𝑎
𝑓 (𝑥) 𝑑𝑥 = lim𝑡→∞∫

𝑡

𝑎
𝑓 (𝑥) 𝑑𝑥

∫
𝑏

−∞
𝑓 (𝑥) 𝑑𝑥 = lim𝑡→−∞∫

𝑏

𝑡
𝑓 (𝑥) 𝑑𝑥

∫
∞

−∞
𝑓 (𝑥) 𝑑𝑥 = lim𝑡→∞ lim𝑠→−∞∫

𝑡

𝑠
𝑓 (𝑥) 𝑑𝑥

• Many applications (infinite time-horizon bargaining, exponential distribution, etc)
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Improper Integral: Example

• Let 𝛽 be a fixed constant. Find

∫
∞

0
1
𝛽 𝑒

− 𝑥
𝛽 𝑑𝑥

▶ Note: This is the probability density function of the exponential distribution
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