Differential Calculus

Keng-Chi Chang Department of Political Science University of California San Diego

September 8, 2022

• How would you approximate f(x) by a linear function around the point x = a?

 $f(x) \approx p(x-a) + q$

- We can let q = f(a), then $p = \frac{f(x) f(a)}{x a}$ is the slope
- To make it accurate, we should let \hat{x} very close to a
- How would you find the maximum or minimum of a function?
- What is the shape of a function?

Functions

Definition

Intuitively, a function is a mapping from an input to a **unique** output. Specifically, a function $f : X \to Y$ is a relation that associates **each element** x in a set X to a **single element** y in another set Y, denoted by

$$y = f(x).$$

X is called the Domain of f, Y is called the Codomain of f. The Range is the subset of Y where f is defined, that is,

$$\operatorname{Range}(f) \equiv f(X) = \{f(x) \mid x \in X\} \subseteq Y.$$

- Note: f is a function, f(x) is the value of the function evaluate at x
- eg. $f(x) = x^2$, $f : \mathbb{R}$ (Domain) $\to \mathbb{R}$ (Codomain), $\operatorname{Range}(f) = [0, \infty)$
- eg. $f(x) = \pm x$, f is not a function

Functions: Examples

- f(x) = x + 1
- f(x) = 1/x
- $f(x, y) = x^2 + y^2$
- $f(x) = \sin(x)$
- $f(x) = \sqrt{x}$
- $f(x) = \frac{3}{1+x^2}$
- Exercise: find their domain and range

Composite Functions

Definition

A composite function is a function of function. Specifically, suppose $f : A \to B$ and $g : B \to C$. Define the composite function $h \equiv g \circ f$, where $h : A \to C$ as

 $h(x) = (g \circ f)(x) = g(f(x))$

•
$$f(x) = \sqrt{x}, g(x) = e^x, g(f(x)) = e^{\sqrt{x}}, f(g(x)) = \sqrt{e^x}$$

- $f(x) = x, g(x) = x^2, g(f(x)) = x^2, f(g(x)) = x^2$
- $f(x) = 2^x$, $g(x) = \log_2(x)$, g(f(x)) = x, f(g(x)) = x
- $f(x) = \sqrt{x}, g(x) = x^2, g(f(x)) = x, f(g(x)) = |x|$

Inverse Functions

Definition

Suppose a function f is 1-1 (distinct inputs maps to distinct outputs). The function g is the inverse of f, if their composite function maps back to itself, ie,

$$g(f(x)) = x.$$

We often denote $g \equiv f^{-1}$.

- f(x) = 2x, $g(x) = \frac{1}{2}x$ is the inverse function of f
- $f(x) = x^2$, its inverse is $\pm \sqrt{x}$ but this is **not** a function
- $f(x) = 2^x$, $g(x) = \log_2(x)$ is the inverse function of f

Limits of Functions

Definition

If a function f(x) tends to L at point x_0 we say it has a limit L at x_0 . Formally, let f(x) be defined at each point around x_0 . Then

$$\lim_{x \to x_0} f(x) = L \quad \text{or, equivalently,} \quad f(x) \to L \text{ as } x \to x_0$$

if for any (small positive) number ε , there exists a corresponding number $\delta > 0$ such that if $0 < |x - x_0| < \delta$, then $|f(x) - L| < \varepsilon$.

- Note: This does **not** imply $f(x_0) = L!!$
- $\lim_{x \to 3} x^2 = 9$
- $\lim_{x \to \infty} \frac{1}{x} = 0$
- $\lim_{x \to \infty} 2^x = \infty$
- When in doubt, plot the function!

Properties of Limit

Property

Let f and g be functions with $\lim_{x\to c} f(x) = K$ and $\lim_{x\to c} g(x) = L$. We have that 1. $\lim_{x \to c} \alpha f(x) = \alpha \lim_{x \to c} f(x) = \alpha K$ 2. $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = K + L$ 3. $\lim_{x \to c} f(x)g(x) = \left[\lim_{x \to c} f(x)\right] \cdot \left[\lim_{x \to c} g(x)\right] = KL$ 4. $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{K}{L}$, provided $L \neq 0$

• Note: K and L have to be real numbers, not $\pm \infty$

The Number e: Base Rate of Growth

. n

$$f(n) = \left(1 + \frac{1}{n}\right)^n$$

•
$$f(n) = \left(1 + \frac{1}{n}\right)^n \to 2.7182818284... \equiv e \text{ as } n \to \infty$$

• Furthermore, we have that $\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n = e^r$ (fix r , take $m = \frac{n}{r} \to \infty$ as $n \to \infty$)

Left and Right Limits

Definition

If x approaches x_0 from the right, we write $\lim_{x \to x_0^+} f(x) = L^+$. If x approaches x_0 from the left, we write $\lim_{x \to x_0^-} f(x) = L^-$.

Theorem

$$\lim_{x \to x_0} f(x) = L \text{ if and only if } L^+ = L^- (= L).$$

•
$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$
, $\lim_{x \to 0^-} \frac{1}{x} = -\infty$

Limits: An Example

- $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = 2$, but $f(1) \neq 2!$
- f(1) is undefined; f(x) is **discontinued** at x = 1

Continuity

Definition

A function f is continuous **at** x_0 if and only if

- 1. $\lim_{x \to x_0} f(x)$ exists, and
- 2. $\lim_{x \to x_0} f(x) = f(x_0).$

In other words, the limiting value equals to the value of the function evaluate at that point.

If f is continuous **at all points** of $x \in X$, we say that f is continuous (on X).

- Continuity ensures that $f(x_0) = L$
- If f is continuous at c, can plug in to get the limit as f(c)

Rate of Change

Let's measure the rate of change of f(x) at a point x_0 with a function R(x):

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0} = \frac{\Delta f}{\Delta x}$$

- Nominator: change in f
- Denominator: change in x
- *R*(*x*) defines the rate of change
- A derivative will examine what happens with a small perturbation at x_0

Derivative at a Point and Differentiability

Definition

The limit of the rate of change R(x) is the derivative of f(x). In other words,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \equiv f'(x_0) \equiv \frac{df}{dx}(x_0)$$

is the derivative of f at x_0 .

If this limit exists, we say that f is differentiable **at** x_0 .

If f is differentiable **at all points** of $x \in X$, we say that f is differentiable (on X).

•
$$f(x) = x^2, x_0 = 1, f'(1) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

• $f(x) = |x|, x_0 = 0, f'(0) = \lim_{x \to 0} \frac{|x|}{x}$ is undefined (right limit 1, left limit -1)

• f(x) = |x| is continuous but not differentiable (rate of change too abrupt)

Definition

$$f'(x) \equiv \frac{df}{dx}(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Definition

Suppose f is differentiable for all $x \in X$. The derivative of the function f(x) is defined by

$$f'(x) \equiv \frac{df}{dx}(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

• Equivalent to the previous definition (replace x with x + h and x_0 with x) but cleaner (not specific to a point x_0)

Definition

$$f'(x) \equiv \frac{df}{dx}(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Equivalent to the previous definition (replace x with x + h and x_0 with x) but cleaner (not specific to a point x_0)
- Note: f' and $\frac{df}{dx}$ are themselves **functions**

Definition

$$f'(x) \equiv \frac{df}{dx}(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Equivalent to the previous definition (replace x with x + h and x_0 with x) but cleaner (not specific to a point x_0)
- Note: f' and $\frac{df}{dx}$ are themselves **functions**
- If f is differentiable, we can find f' first and plug-in to get $f(x_0)$

Definition

$$f'(x) \equiv \frac{df}{dx}(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Equivalent to the previous definition (replace x with x + h and x_0 with x) but cleaner (not specific to a point x_0)
- Note: f' and $\frac{df}{dx}$ are themselves **functions**
- If f is differentiable, we can find f' first and plug-in to get $f(x_0)$
- For a line, the derivative is the slope

Definition

$$f'(x) \equiv \frac{df}{dx}(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Equivalent to the previous definition (replace x with x + h and x_0 with x) but cleaner (not specific to a point x_0)
- Note: f' and $\frac{df}{dx}$ are themselves **functions**
- If f is differentiable, we can find f' first and plug-in to get $f(x_0)$
- For a line, the derivative is the slope
- For a curve, the derivative is the slope of the line tangent to the curve at each x

- Let's first do some examples:
 - f(x) = 3x, f'(x) = ?

- Let's first do some examples:
 - f(x) = 3x, f'(x) = ?
 f(x) = x², f'(x) = ?

- Let's first do some examples:
 - f(x) = 3x, f'(x) = ?
 f(x) = x², f'(x) = ?
 - f(x) = 1/x, f'(x) = ?

- Let's first do some examples:
 - f(x) = 3x, f'(x) = ?
 - $f(x) = x^2, f'(x) = ?$
 - f(x) = 1/x, f'(x) = ?
- Rarely will we take limit to calculate derivative
- Rather, rely on rules and properties of derivatives

- Let's first do some examples:
 - f(x) = 3x, f'(x) = ?
 - $f(x) = x^2, f'(x) = ?$
 - f(x) = 1/x, f'(x) = ?
- · Rarely will we take limit to calculate derivative
- Rather, rely on rules and properties of derivatives
- Important: Do not forget core intuition
- Strategy: Work on problems

$$f(x) = c \qquad \qquad f'(x) = 0$$

$$f(x) = c$$
 $f'(x) = 0$
 $f(x) = x$ $f'(x) = 1$

$$f(x) = c f'(x) = 0$$

$$f(x) = x f'(x) = 1$$

$$f(x) = x^k f'(x) = k \cdot x^{k-1}$$

$$f(x) = c f'(x) = 0$$

$$f(x) = x f'(x) = 1$$

$$f(x) = x^k f'(x) = k \cdot x^{k-1} (Power, Polynomial)$$

$$f(x) = e^x f'(x) = e^x (Exponential)$$

$$f(x) = c$$
 $f'(x) = 0$ $f(x) = x$ $f'(x) = 1$ $f(x) = x^k$ $f'(x) = k \cdot x^{k-1}$ (Power, Polynomial) $f(x) = e^x$ $f'(x) = e^x$ (Exponential) $f(x) = \ln(x)$ $f'(x) = \frac{1}{x}$ (Logarithm)

	$f^{'}(x)=0$	f(x) = c
	f'(x) = 1	f(x) = x
(Power, Polynomial)	$f'(x) = k \cdot x^{k-1}$	$f(x) = x^k$
(Exponential)	$f'(x) = e^x$	$f(x) = e^x$
(Logarithm)	$f'(x) = \frac{1}{x}$	$f(x) = \ln(x)$
(Trigonometrics)	$f'(x) = \cos(x)$	$f(x) = \sin(x)$

	$f^{\prime}(x)=0$	f(x) = c
	f'(x) = 1	f(x) = x
(Power, Polynomial)	$f'(x) = k \cdot x^{k-1}$	$f(x) = x^k$
(Exponential)	$f'(x) = e^x$	$f(x) = e^x$
(Logarithm)	$f'(x) = \frac{1}{x}$	$f(x) = \ln(x)$
(Trigonometrics)	$f^{'}(x)=\cos(x)$	$f(x) = \sin(x)$
	$f'(x) = -\sin(x)$	$f(x) = \cos(x)$

How to Do Operations

Algebra of Differentiation

$$h(x) = cf(x)$$
 $h'(x) = cf'(x)$ (Constant)

Algebra of Differentiation

$$h(x) = cf(x)$$
 $h'(x) = cf'(x)$ (Constant)
 $h(x) = f(x) + g(x)$ $h'(x) = f'(x) + g'(x)$ (Summation)

Algebra of Differentiation

$$\begin{aligned} h(x) &= cf(x) & h'(x) &= cf'(x) & (\text{Constant}) \\ h(x) &= f(x) + g(x) & h'(x) &= f'(x) + g'(x) & (\text{Summation}) \\ h(x) &= f(x)g(x) & h'(x) &= f'(x)g(x) + g'(x)f(x) & (\text{Product}) \end{aligned}$$

Algebra of Differentiation

$$h(x) = cf(x) \qquad h'(x) = cf'(x) \qquad \text{(Constant)}$$

$$h(x) = f(x) + g(x) \qquad h'(x) = f'(x) + g'(x) \qquad \text{(Summation)}$$

$$h(x) = f(x)g(x) \qquad h'(x) = f'(x)g(x) + g'(x)f(x) \qquad \text{(Product)}$$

$$h(x) = \frac{f(x)}{g(x)} \qquad h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2} \qquad \text{(Quotient)}$$

• Find the derivative of $f(x) = (x^3)(2x^4)$

• Find the derivative of
$$f(x) = \frac{x^2+1}{x^2-1}$$

- Show that $(x^k)' = k \cdot x^{k-1}$
 - Hint: By induction, suppose holds for k-1, show holds for k

- Show that $(\log_a(x))' = \frac{1}{x \ln(a)}$
 - Hint: $\log_a(x) = \frac{\ln x}{\ln a}$ (since if $y = \log_a(x)$, $a^y = x$, take ln)

Chain Rule: Derivative of Composite Functions

Chain Rule

Suppose both f and g are differentiable. The derivative of $(f \circ g)(x) \equiv f[g(x)]$ is $\frac{d}{dx} (f[g(x)]) = f'[g(x)]g'(x).$

Or, equivalently,

$$(f(g(x)))' = f'(g(x))g'(x).$$

• Intuitively, we can think of f as a function of g and g as a function of x and write

$$\frac{df(g(x))}{dx} = \frac{df(g)}{dg} \cdot \frac{dg(x)}{dx}, \quad \text{or,} \quad \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$$

• x changes f indirectly: First x affects g by $\frac{dg}{dx}$, then g affects f by $\frac{df}{dg}$

- Find dy/dx for $y = (3x^2 + 5x 7)^6$
 - Hint: Let $f(z) = z^6$ and $z = g(x) = 3x^2 + 5x 7$

- Find dy/dx for $y = \sin(x^3 + 4x)$
 - Hint: Let $f(z) = \sin(z)$ and $z = g(x) = x^3 + 4x$

- Show that $(a^x)' = a^x(\ln(a))$
 - Hint: $a^x = e^{\ln a^x} = e^{x \ln a}$ (very important substitution)
 - Note: $(a^x)' = c \cdot a^x$ suggests exponential function is proportional to its own derivative!
 - *e* is the base *a* such that the proportion *c* is 1, and this is precisely why $(e^x)' = e^x$

• Show the Generalized Power Rule:

Let
$$y = [g(x)]^n$$
, then $\frac{dy}{dx} = n[g(x)]^{n-1}g'(x)$

Show that

$$\left(e^{u(x)}\right)' = e^{u(x)}u'(x)$$

• Show that, for u(x) > 0,

$$(\ln u(x))' = \frac{u'(x)}{u(x)}$$

• What about the derivative of f'(x) with respect to x?

$$f''(x) \equiv f^{(2)}(x) \equiv \frac{d}{dx} \left(\frac{df}{dx}\right)(x) \equiv \frac{d^2 f}{dx^2}(x) \equiv \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

• We can similarly define the derivatives of f''(x), and so on

Higher-Order Derivatives: Example

• $f(x) = x^3$, find $f', f^{(2)}, f^{(3)}, f^{(4)}$

Increasing or Decreasing Functions

- Derivatives inform us about the shape of a function
- The first derivative, f'(x), identifies whether the function f(x) at the point x is increasing or decreasing at x
 - $f'(x) > 0 \Rightarrow$ Increasing
 - $f'(x) < 0 \Rightarrow$ Decreasing
 - $f'(x) = 0 \Rightarrow$ Neither increasing nor decreasing (i.e. max, min, or saddle point)

Increasing or Decreasing Functions: Example

• Determine where the function increase or decrease

$$f(x) = x^2$$

Increasing or Decreasing Functions: Example

• Determine where the function increase or decrease

$$f(x) = x^3$$

Minima: Example

$$f(x) = x^2$$

Saddle Point: Example

$$f(x) = x^3$$

Convex or Concave Functions

- The second derivative informs us how the function is bending (curvature)
- The second derivative, f''(x), identifies whether the function f is concave or convex around x
 - If $f''(x) > 0 \Rightarrow$ Convex
 - If $f''(x) < 0 \Rightarrow$ Concave

Optimization

Extreme Value Theorem

Suppose $f : [a, b] \to \mathbb{R}$ and that f is continuous. Then f obtains its extreme values (maximum and minimum) on [a, b].

Corollary

Suppose $f : [a, b] \to \mathbb{R}$ is continuous and differentiable, and that neither f(a) nor f(b) is the extreme value. Then f obtains its extreme values on (a, b) and if $f(x_0)$ is the extreme value of f with $x_0 \in (a, b)$ then, $f'(x_0) = 0$.

Solving Optimization

- Find f'(x) (First Order Condition)
 - Set f'(x) = 0 and solve for x
 - Call all x_0 such that $f'(x_0) = 0$ critical values
- Find $f^{''}(x)$ (Second Order Condition) and evaluate at each x_0
 - If $f''(x_0) > 0$, Convex, local minimum
 - If $f''(x_0) < 0$, Concave, local maximum
 - If $f''(x_0) = 0$, Inconclusive, local minimum, maximum, or saddle point
- Check end points and compare them with local extremum

Optimization: Examples

• Find all maxima and minima:

$$f(x) = x^3 - 3x$$
 for $x \in [-2, 5]$

Optimization: Examples

• Find all maxima and minima:

$$f(x) = \ln(x) - x \text{ for } x > 0$$