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Why study differential calculus?

• How would you approximate 𝑓 (𝑥) by a linear function around the point 𝑥 = 𝑎?
𝑓 (𝑥) ≈ 𝑝(𝑥 − 𝑎) + 𝑞

▶ We can let 𝑞 = 𝑓 (𝑎), then 𝑝 = 𝑓 (𝑥)−𝑓 (𝑎)
𝑥−𝑎 is the slope

▶ To make it accurate, we should let 𝑥 very close to 𝑎
• How would you find the maximum or minimum of a function?

• What is the shape of a function?
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Functions

Definition
Intuitively, a function is a mapping from an input to a unique output.
Specifically, a function 𝑓 ∶ 𝑋 → 𝑌 is a relation that associates each element 𝑥 in a set
𝑋 to a single element 𝑦 in another set 𝑌 , denoted by

𝑦 = 𝑓 (𝑥).
𝑋 is called the Domain of 𝑓 , 𝑌 is called the Codomain of 𝑓 .
The Range is the subset of 𝑌 where 𝑓 is defined, that is,

Range(𝑓 ) ≡ 𝑓 (𝑋) = {𝑓 (𝑥) | 𝑥 ∈ 𝑋} ⊆ 𝑌 .

• Note: 𝑓 is a function, 𝑓 (𝑥) is the value of the function evaluate at 𝑥
• eg. 𝑓 (𝑥) = 𝑥2, 𝑓 ∶ ℝ (Domain) → ℝ (Codomain), Range(𝑓 ) = [0,∞)
• eg. 𝑓 (𝑥) = ±𝑥 , 𝑓 is not a function

3 / 41



Functions: Examples

• 𝑓 (𝑥) = 𝑥 + 1
• 𝑓 (𝑥) = 1/𝑥
• 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2
• 𝑓 (𝑥) = sin(𝑥)
• 𝑓 (𝑥) = √𝑥
• 𝑓 (𝑥) = 3

1+𝑥2• Exercise: find their domain and range
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Composite Functions

Definition
A composite function is a function of function.
Specifically, suppose 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 .
Define the composite function ℎ ≡ 𝑔 ∘ 𝑓 , where ℎ ∶ 𝐴 → 𝐶 as

ℎ(𝑥) = (𝑔 ∘ 𝑓 )(𝑥) = 𝑔(𝑓 (𝑥))

• 𝑓 (𝑥) = √𝑥 , 𝑔(𝑥) = 𝑒𝑥 , 𝑔(𝑓 (𝑥)) = 𝑒√𝑥 , 𝑓 (𝑔(𝑥)) = √𝑒𝑥
• 𝑓 (𝑥) = 𝑥 , 𝑔(𝑥) = 𝑥2, 𝑔(𝑓 (𝑥)) = 𝑥2, 𝑓 (𝑔(𝑥)) = 𝑥2
• 𝑓 (𝑥) = 2𝑥 , 𝑔(𝑥) = log2(𝑥), 𝑔(𝑓 (𝑥)) = 𝑥 , 𝑓 (𝑔(𝑥)) = 𝑥
• 𝑓 (𝑥) = √𝑥 , 𝑔(𝑥) = 𝑥2, 𝑔(𝑓 (𝑥)) = 𝑥 , 𝑓 (𝑔(𝑥)) = |𝑥|
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Inverse Functions

Definition
Suppose a function 𝑓 is 1-1 (distinct inputs maps to distinct outputs).
The function 𝑔 is the inverse of 𝑓 , if their composite function maps back to itself, ie,

𝑔(𝑓 (𝑥)) = 𝑥.
We often denote 𝑔 ≡ 𝑓 −1.

• 𝑓 (𝑥) = 2𝑥 , 𝑔(𝑥) = 1
2𝑥 is the inverse function of 𝑓

• 𝑓 (𝑥) = 𝑥2, its inverse is±√𝑥 but this is not a function

• 𝑓 (𝑥) = 2𝑥 , 𝑔(𝑥) = log2(𝑥) is the inverse function of 𝑓
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Limits of Functions

Definition
If a function 𝑓 (𝑥) tends to 𝐿 at point 𝑥0 we say it has a limit 𝐿 at 𝑥0.
Formally, let 𝑓 (𝑥) be defined at each point around 𝑥0. Then

lim𝑥→𝑥0
𝑓 (𝑥) = 𝐿 or, equivalently, 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑥0

if for any (small positive) number 𝜀 , there exists a corresponding number 𝛿 > 0 such
that if 0 < |𝑥 − 𝑥0| < 𝛿 , then |𝑓 (𝑥) − 𝐿| < 𝜀 .
• Note: This does not imply 𝑓 (𝑥0) = 𝐿!!
• lim𝑥→3 𝑥

2 = 9
• lim𝑥→∞

1
𝑥 = 0

• lim𝑥→∞ 2𝑥 = ∞
• When in doubt, plot the function!
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Properties of Limit

Property

Let 𝑓 and 𝑔 be functions with lim𝑥→𝑐 𝑓 (𝑥) = 𝐾 and lim𝑥→𝑐 𝑔(𝑥) = 𝐿. We have that

1. lim𝑥→𝑐 𝛼𝑓 (𝑥) = 𝛼 lim𝑥→𝑐 𝑓 (𝑥) = 𝛼𝐾
2. lim𝑥→𝑐 [𝑓 (𝑥) + 𝑔(𝑥)] = lim𝑥→𝑐 𝑓 (𝑥) + lim𝑥→𝑐 𝑔(𝑥) = 𝐾 + 𝐿

3. lim𝑥→𝑐 𝑓 (𝑥)𝑔(𝑥) = [lim𝑥→𝑐 𝑓 (𝑥)] ⋅ [lim𝑥→𝑐 𝑔(𝑥)] = 𝐾𝐿

4. lim𝑥→𝑐
𝑓 (𝑥)
𝑔(𝑥) =

lim𝑥→𝑐 𝑓 (𝑥)
lim𝑥→𝑐 𝑔(𝑥)

= 𝐾
𝐿 , provided 𝐿 ≠ 0

• Note: 𝐾 and 𝐿 have to be real numbers, not±∞
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The Number e: Base Rate of Growth

𝑓 (𝑛) = (1 + 1
𝑛)

𝑛

1.0

1.5

2.0

2.5

0 10 20 30 40 50
n

• 𝑓 (𝑛) = (1 + 1
𝑛)

𝑛 → 2.7182818284... ≡ 𝑒 as 𝑛 → ∞
• Furthermore, we have that lim𝑛→∞ (1 + 𝑟

𝑛)
𝑛 = 𝑒𝑟 (fix 𝑟 , take𝑚 = 𝑛

𝑟 → ∞ as 𝑛 → ∞)
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Left and Right Limits

Definition
If 𝑥 approaches 𝑥0 from the right, we write lim

𝑥→𝑥+0
𝑓 (𝑥) = 𝐿+.

If 𝑥 approaches 𝑥0 from the left, we write lim𝑥→𝑥−0
𝑓 (𝑥) = 𝐿−.

Theorem
lim𝑥→𝑥0

𝑓 (𝑥) = 𝐿 if and only if 𝐿+ = 𝐿−(= 𝐿).

• lim
𝑥→0+

1
𝑥 = ∞, lim𝑥→0−

1
𝑥 = −∞
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Limits: An Example

𝑓 (𝑥) = 𝑥2 − 1
𝑥 − 1 = (𝑥 + 1)(𝑥 − 1)

𝑥 − 1 = { 𝑥 + 1 if 𝑥 ≠ 1;
undefined if 𝑥 = 1.

-2

0

2

4

-3 -2 -1 0 1 2 3
x

• lim
𝑥→1+

𝑓 (𝑥) = lim𝑥→1− 𝑓 (𝑥) = 2, but 𝑓 (1) ≠ 2!
• 𝑓 (1) is undefined; 𝑓 (𝑥) is discontinued at 𝑥 = 1
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Continuity

Definition
A function 𝑓 is continuous at 𝑥0 if and only if

1. lim𝑥→𝑥0
𝑓 (𝑥) exists, and

2. lim𝑥→𝑥0
𝑓 (𝑥) = 𝑓 (𝑥0).

In other words, the limiting value equals to the value of the function evaluate at that
point.
If 𝑓 is continuous at all points of 𝑥 ∈ 𝑋 , we say that 𝑓 is continuous (on𝑋 ).

• Continuity ensures that 𝑓 (𝑥0) = 𝐿
• If 𝑓 is continuous at 𝑐, can plug in to get the limit as 𝑓 (𝑐)
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Rate of Change

Let’s measure the rate of change of 𝑓 (𝑥) at a point 𝑥0 with a function 𝑅(𝑥):
𝑅(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑥0)

𝑥 − 𝑥0
= Δ𝑓

Δ𝑥
• Nominator: change in 𝑓
• Denominator: change in 𝑥
• 𝑅(𝑥) defines the rate of change

• A derivative will examine what happens with a small perturbation at 𝑥0
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Derivative at a Point and Differentiability

Definition
The limit of the rate of change 𝑅(𝑥) is the derivative of 𝑓 (𝑥).
In other words,

lim𝑥→𝑥0
𝑓 (𝑥) − 𝑓 (𝑥0)

𝑥 − 𝑥0
≡ 𝑓 ′(𝑥0) ≡

𝑑𝑓
𝑑𝑥 (𝑥0)

is the derivative of 𝑓 at 𝑥0.
If this limit exists, we say that 𝑓 is differentiable at 𝑥0.
If 𝑓 is differentiable at all points of 𝑥 ∈ 𝑋 , we say that 𝑓 is differentiable (on𝑋 ).

• 𝑓 (𝑥) = 𝑥2, 𝑥0 = 1, 𝑓 ′(1) = lim𝑥→1
𝑥2−1
𝑥−1 = 2

• 𝑓 (𝑥) = |𝑥|, 𝑥0 = 0, 𝑓 ′(0) = lim𝑥→0
|𝑥|
𝑥 is undefined (right limit 1, left limit−1)

• 𝑓 (𝑥) = |𝑥| is continuous but not differentiable (rate of change too abrupt)
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Derivative as a Function

Definition
Suppose 𝑓 is differentiable for all 𝑥 ∈ 𝑋 .
The derivative of the function 𝑓 (𝑥) is defined by

𝑓 ′(𝑥) ≡ 𝑑𝑓
𝑑𝑥 (𝑥) ≡ limℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
(𝑥 + ℎ) − 𝑥 = limℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ .

• Equivalent to the previous definition (replace 𝑥 with 𝑥 + ℎ and 𝑥0 with 𝑥 ) but
cleaner (not specific to a point 𝑥0)

• Note: 𝑓 ′ and 𝑑𝑓
𝑑𝑥 are themselves functions

• If 𝑓 is differentiable, we can find 𝑓 ′ first and plug-in to get 𝑓 (𝑥0)
• For a line, the derivative is the slope
• For a curve, the derivative is the slope of the line tangent to the curve at each 𝑥
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Calculating Derivatives

• Let’s first do some examples:

▶ 𝑓 (𝑥) = 3𝑥 , 𝑓 ′(𝑥) = ?

▶ 𝑓 (𝑥) = 𝑥2, 𝑓 ′(𝑥) = ?
▶ 𝑓 (𝑥) = 1/𝑥 , 𝑓 ′(𝑥) = ?

• Rarely will we take limit to calculate derivative

• Rather, rely on rules and properties of derivatives

• Important: Do not forget core intuition
• Strategy: Work on problems
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Rules of Differentiation

Rules of Differentiation

𝑓 (𝑥) = 𝑐 𝑓 ′(𝑥) = 0

𝑓 (𝑥) = 𝑥 𝑓 ′(𝑥) = 1
𝑓 (𝑥) = 𝑥𝑘 𝑓 ′(𝑥) = 𝑘 ⋅ 𝑥𝑘−1 (Power, Polynomial)

𝑓 (𝑥) = 𝑒𝑥 𝑓 ′(𝑥) = 𝑒𝑥 (Exponential)

𝑓 (𝑥) = ln(𝑥) 𝑓 ′(𝑥) = 1
𝑥 (Logarithm)

𝑓 (𝑥) = sin(𝑥) 𝑓 ′(𝑥) = cos(𝑥) (Trigonometrics)

𝑓 (𝑥) = cos(𝑥) 𝑓 ′(𝑥) = − sin(𝑥)
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How to Do Operations

Algebra of Differentiation

Suppose 𝑓 and 𝑔 are both differentiable.

ℎ(𝑥) = 𝑐𝑓 (𝑥) ℎ′(𝑥) = 𝑐𝑓 ′(𝑥) (Constant)

ℎ(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) ℎ′(𝑥) = 𝑓 ′(𝑥) + 𝑔′(𝑥) (Summation)

ℎ(𝑥) = 𝑓 (𝑥)𝑔(𝑥) ℎ′(𝑥) = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑔′(𝑥)𝑓 (𝑥) (Product)

ℎ(𝑥) = 𝑓 (𝑥)
𝑔(𝑥) ℎ′(𝑥) = 𝑓 ′(𝑥)𝑔(𝑥) − 𝑔′(𝑥)𝑓 (𝑥)

𝑔(𝑥)2 (Quotient)
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Differentiation: Examples

• Find the derivative of 𝑓 (𝑥) = (𝑥3)(2𝑥4)
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Differentiation: Examples

• Find the derivative of 𝑓 (𝑥) = 𝑥2+1
𝑥2−1
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Differentiation: Examples

• Show that (𝑥𝑘)′ = 𝑘 ⋅ 𝑥𝑘−1
▶ Hint: By induction, suppose holds for 𝑘 − 1, show holds for 𝑘
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Differentiation: Examples

• Show that (log𝑎(𝑥))′ = 1
𝑥 ln(𝑎)

▶ Hint: log𝑎(𝑥) = ln 𝑥
ln 𝑎 (since if 𝑦 = log𝑎(𝑥), 𝑎𝑦 = 𝑥 , take ln)
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Chain Rule: Derivative of Composite Functions

Chain Rule
Suppose both 𝑓 and 𝑔 are differentiable. The derivative of (𝑓 ∘ 𝑔)(𝑥) ≡ 𝑓 [𝑔(𝑥)] is

𝑑
𝑑𝑥 (𝑓 [𝑔(𝑥)]) = 𝑓 ′[𝑔(𝑥)]𝑔′(𝑥).

Or, equivalently,
(𝑓 (𝑔(𝑥)))′ = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥).

• Intuitively, we can think of 𝑓 as a function of 𝑔 and 𝑔 as a function of 𝑥 and write

𝑑𝑓 (𝑔(𝑥))
𝑑𝑥 = 𝑑𝑓 (𝑔)

𝑑𝑔 ⋅ 𝑑𝑔(𝑥)𝑑𝑥 , or,
𝑑𝑓
𝑑𝑥 = 𝑑𝑓

𝑑𝑔 ⋅ 𝑑𝑔𝑑𝑥
• 𝑥 changes 𝑓 indirectly: First 𝑥 affects 𝑔 by

𝑑𝑔
𝑑𝑥 , then 𝑔 affects 𝑓 by

𝑑𝑓
𝑑𝑔
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Chain Rule: Examples

• Find 𝑑𝑦/𝑑𝑥 for 𝑦 = (3𝑥2 + 5𝑥 − 7)6
▶ Hint: Let 𝑓 (𝑧) = 𝑧6 and 𝑧 = 𝑔(𝑥) = 3𝑥2 + 5𝑥 − 7
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Chain Rule: Examples

• Find 𝑑𝑦/𝑑𝑥 for 𝑦 = sin(𝑥3 + 4𝑥)
▶ Hint: Let 𝑓 (𝑧) = sin(𝑧) and 𝑧 = 𝑔(𝑥) = 𝑥3 + 4𝑥
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Chain Rule: Examples

• Show that (𝑎𝑥)′ = 𝑎𝑥(ln(𝑎))
▶ Hint: 𝑎𝑥 = 𝑒ln 𝑎𝑥 = 𝑒𝑥 ln 𝑎 (very important substitution)
▶ Note: (𝑎𝑥)′ = 𝑐 ⋅ 𝑎𝑥 suggests exponential function is proportional to its own derivative!
▶ 𝑒 is the base 𝑎 such that the proportion 𝑐 is 1, and this is precisely why (𝑒𝑥)′ = 𝑒𝑥
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Chain Rule: Examples

• Show the Generalized Power Rule:

Let 𝑦 = [𝑔(𝑥)]𝑛, then
𝑑𝑦
𝑑𝑥 = 𝑛[𝑔(𝑥)]𝑛−1𝑔′(𝑥)

27 / 41



Chain Rule: Examples

• Show that
(𝑒𝑢(𝑥))′ = 𝑒𝑢(𝑥)𝑢′(𝑥)
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Chain Rule: Examples

• Show that, for 𝑢(𝑥) > 0,
(ln 𝑢(𝑥))′ = 𝑢′(𝑥)

𝑢(𝑥)
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Higher-Order Derivatives

• What about the derivative of 𝑓 ′(𝑥)with respect to 𝑥?

𝑓 ″(𝑥) ≡ 𝑓 (2)(𝑥) ≡ 𝑑
𝑑𝑥 (𝑑𝑓𝑑𝑥 ) (𝑥) ≡

𝑑2𝑓
𝑑𝑥2 (𝑥) ≡ limℎ→0

𝑓 ′(𝑥 + ℎ) − 𝑓 ′(𝑥)
ℎ

• We can similarly define the derivatives of 𝑓 ″(𝑥), and so on
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Higher-Order Derivatives: Example

• 𝑓 (𝑥) = 𝑥3, find 𝑓 ′, 𝑓 (2), 𝑓 (3), 𝑓 (4)
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Increasing or Decreasing Functions

• Derivatives inform us about the shape of a function

• The first derivative, 𝑓 ′(𝑥), identifies whether the function 𝑓 (𝑥) at the point 𝑥 is
increasing or decreasing at 𝑥
▶ 𝑓 ′(𝑥) > 0⇒ Increasing
▶ 𝑓 ′(𝑥) < 0⇒ Decreasing
▶ 𝑓 ′(𝑥) = 0⇒ Neither increasing nor decreasing (i.e. max, min, or saddle point)
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Increasing or Decreasing Functions: Example

• Determine where the function increase or decrease

𝑓 (𝑥) = 𝑥2
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Increasing or Decreasing Functions: Example

• Determine where the function increase or decrease

𝑓 (𝑥) = 𝑥3
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Minima: Example

𝑓 (𝑥) = 𝑥2
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Saddle Point: Example

𝑓 (𝑥) = 𝑥3
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Convex or Concave Functions

• The second derivative informs us how the function is bending (curvature)
• The second derivative, 𝑓 ″(𝑥), identifies whether the function 𝑓 is concave or

convex around 𝑥
▶ If 𝑓 ″(𝑥) > 0⇒ Convex
▶ If 𝑓 ″(𝑥) < 0⇒ Concave
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Optimization

Extreme Value Theorem
Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ and that 𝑓 is continuous. Then 𝑓 obtains its extreme values
(maximum and minimum) on [𝑎, 𝑏].

Corollary

Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ is continuous and differentiable, and that neither 𝑓 (𝑎) nor
𝑓 (𝑏) is the extreme value. Then 𝑓 obtains its extreme values on (𝑎, 𝑏) and if 𝑓 (𝑥0) is
the extreme value of 𝑓 with 𝑥0 ∈ (𝑎, 𝑏) then, 𝑓 ′(𝑥0) = 0.
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Solving Optimization

• Find 𝑓 ′(𝑥) (First Order Condition)
▶ Set 𝑓 ′(𝑥) = 0 and solve for 𝑥
▶ Call all 𝑥0 such that 𝑓 ′(𝑥0) = 0 critical values

• Find 𝑓 ″(𝑥) (Second Order Condition) and evaluate at each 𝑥0
▶ If 𝑓 ″(𝑥0) > 0, Convex, local minimum
▶ If 𝑓 ″(𝑥0) < 0, Concave, local maximum
▶ If 𝑓 ″(𝑥0) = 0, Inconclusive, local minimum, maximum, or saddle point

• Check end points and compare them with local extremum
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Optimization: Examples

• Find all maxima and minima:

𝑓 (𝑥) = 𝑥3 − 3𝑥 for 𝑥 ∈ [−2, 5]
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Optimization: Examples

• Find all maxima and minima:

𝑓 (𝑥) = ln(𝑥) − 𝑥 for 𝑥 > 0
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