Differential Calculus

Keng-Chi Chang
Department of Political Science
University of California San Diego

September 8, 2022

Why study differential calculus?

- How would you approximate $f(x)$ by a linear function around the point $x=a$?

$$
f(x) \approx p(x-a)+q
$$

- We can let $q=f(a)$, then $p=\frac{f(x)-f(a)}{x-a}$ is the slope
- To make it accurate, we should let x very close to a
- How would you find the maximum or minimum of a function?
- What is the shape of a function?

Functions

Definition

Intuitively, a function is a mapping from an input to a unique output.
Specifically, a function $f: X \rightarrow Y$ is a relation that associates each element x in a set X to a single element y in another set Y, denoted by

$$
y=f(x)
$$

X is called the Domain of f, Y is called the Codomain of f.
The Range is the subset of Y where f is defined, that is,

$$
\operatorname{Range}(f) \equiv f(X)=\{f(x) \mid x \in X\} \subseteq Y
$$

- Note: f is a function, $f(x)$ is the value of the function evaluate at x
- eg. $f(x)=x^{2}, f: \mathbb{R}$ (Domain) $\rightarrow \mathbb{R}$ (Codomain), Range $(f)=[0, \infty)$
- eg. $f(x)= \pm x, f$ is not a function

Functions: Examples

- $f(x)=x+1$
- $f(x)=1 / x$
- $f(x, y)=x^{2}+y^{2}$
- $f(x)=\sin (x)$
- $f(x)=\sqrt{x}$
- $f(x)=\frac{3}{1+x^{2}}$
- Exercise: find their domain and range

Composite Functions

Definition

A composite function is a function of function.
Specifically, suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
Define the composite function $h \equiv g \circ f$, where $h: A \rightarrow C$ as

$$
h(x)=(g \circ f)(x)=g(f(x))
$$

- $f(x)=\sqrt{x}, g(x)=e^{x}, g(f(x))=e^{\sqrt{x}}, f(g(x))=\sqrt{e^{x}}$
- $f(x)=x, g(x)=x^{2}, g(f(x))=x^{2}, f(g(x))=x^{2}$
- $f(x)=2^{x}, g(x)=\log _{2}(x), g(f(x))=x, f(g(x))=x$
- $f(x)=\sqrt{x}, g(x)=x^{2}, g(f(x))=x, f(g(x))=|x|$

Inverse Functions

Definition

Suppose a function f is 1-1 (distinct inputs maps to distinct outputs).
The function g is the inverse of f, if their composite function maps back to itself, ie,

$$
g(f(x))=x
$$

We often denote $g \equiv f^{-1}$.

- $f(x)=2 x, g(x)=\frac{1}{2} x$ is the inverse function of f
- $f(x)=x^{2}$, its inverse is $\pm \sqrt{x}$ but this is not a function
- $f(x)=2^{x}, g(x)=\log _{2}(x)$ is the inverse function of f

Limits of Functions

Definition

If a function $f(x)$ tends to L at point x_{0} we say it has a limit L at x_{0}. Formally, let $f(x)$ be defined at each point around x_{0}. Then

$$
\lim _{x \rightarrow x_{0}} f(x)=L \quad \text { or, equivalently, } f(x) \rightarrow L \text { as } x \rightarrow x_{0}
$$

if for any (small positive) number ε, there exists a corresponding number $\delta>0$ such that if $0<\left|x-x_{0}\right|<\delta$, then $|f(x)-L|<\varepsilon$.

- Note: This does not imply $f\left(x_{0}\right)=L!$!
- $\lim _{x \rightarrow 3} x^{2}=9$
- $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
- $\lim _{x \rightarrow \infty} 2^{x}=\infty$
- When in doubt, plot the function!

Properties of Limit

Property

Let f and g be functions with $\lim _{x \rightarrow c} f(x)=K$ and $\lim _{x \rightarrow c} g(x)=L$. We have that

1. $\lim _{x \rightarrow c} \alpha f(x)=\alpha \lim _{x \rightarrow c} f(x)=\alpha K$
2. $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=K+L$
3. $\lim _{x \rightarrow c} f(x) g(x)=\left[\lim _{x \rightarrow c} f(x)\right] \cdot\left[\lim _{x \rightarrow c} g(x)\right]=K L$
4. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{K}{L}$, provided $L \neq 0$

- Note: K and L have to be real numbers, not $\pm \infty$

The Number e: Base Rate of Growth

$$
f(n)=\left(1+\frac{1}{n}\right)^{n}
$$

- $f(n)=\left(1+\frac{1}{n}\right)^{n} \rightarrow 2.7182818284 \ldots \equiv e$ as $n \rightarrow \infty$
- Furthermore, we have that $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}\left(\right.$ fix r, take $m=\frac{n}{r} \rightarrow \infty$ as $\left.n \rightarrow \infty\right)$

Left and Right Limits

Definition

If x approaches x_{0} from the right, we write $\lim _{x \rightarrow x_{+}^{+}} f(x)=L^{+}$.

$$
x \rightarrow x_{0}^{+}
$$

If x approaches x_{0} from the left, we write $\lim _{x \rightarrow x_{0}^{-}} f(x)=L^{-}$.

Theorem

$\lim _{x \rightarrow x_{0}} f(x)=L$ if and only if $L^{+}=L^{-}(=L)$.

- $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$

Limits: An Example

$$
f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}= \begin{cases}x+1 & \text { if } x \neq 1 \\ \text { undefined } & \text { if } x=1\end{cases}
$$

- $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=2$, but $f(1) \neq 2$!
- $f(1)$ is undefined; $f(x)$ is discontinued at $x=1$

Continuity

Definition

A function f is continuous at x_{0} if and only if

1. $\lim _{x \rightarrow x_{0}} f(x)$ exists, and
2. $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

In other words, the limiting value equals to the value of the function evaluate at that point.
If f is continuous at all points of $x \in X$, we say that f is continuous (on X).

- Continuity ensures that $f\left(x_{0}\right)=L$
- If f is continuous at c, can plug in to get the limit as $f(c)$

Rate of Change

Let's measure the rate of change of $f(x)$ at a point x_{0} with a function $R(x)$:

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\frac{\Delta f}{\Delta x}
$$

- Nominator: change in f
- Denominator: change in x
- $R(x)$ defines the rate of change
- A derivative will examine what happens with a small perturbation at x_{0}

Derivative at a Point and Differentiability

Definition

The limit of the rate of change $R(x)$ is the derivative of $f(x)$. In other words,

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \equiv f^{\prime}\left(x_{0}\right) \equiv \frac{d f}{d x}\left(x_{0}\right)
$$

is the derivative of f at x_{0}.
If this limit exists, we say that f is differentiable at x_{0}. If f is differentiable at all points of $x \in X$, we say that f is differentiable (on X).

- $f(x)=x^{2}, x_{0}=1, f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$
- $f(x)=|x|, x_{0}=0, f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{|x|}{x}$ is undefined (right limit 1 , left limit -1)
- $f(x)=|x|$ is continuous but not differentiable (rate of change too abrupt)

Derivative as a Function

Definition

Suppose f is differentiable for all $x \in X$.
The derivative of the function $f(x)$ is defined by

$$
f^{\prime}(x) \equiv \frac{d f}{d x}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Derivative as a Function

Definition

Suppose f is differentiable for all $x \in X$.
The derivative of the function $f(x)$ is defined by

$$
f^{\prime}(x) \equiv \frac{d f}{d x}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Equivalent to the previous definition (replace x with $x+h$ and x_{0} with x) but cleaner (not specific to a point x_{0})

Derivative as a Function

Definition

Suppose f is differentiable for all $x \in X$.
The derivative of the function $f(x)$ is defined by

$$
f^{\prime}(x) \equiv \frac{d f}{d x}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Equivalent to the previous definition (replace x with $x+h$ and x_{0} with x) but cleaner (not specific to a point x_{0})
- Note: f^{\prime} and $\frac{d f}{d x}$ are themselves functions

Derivative as a Function

Definition

Suppose f is differentiable for all $x \in X$.
The derivative of the function $f(x)$ is defined by

$$
f^{\prime}(x) \equiv \frac{d f}{d x}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Equivalent to the previous definition (replace x with $x+h$ and x_{0} with x) but cleaner (not specific to a point x_{0})
- Note: f^{\prime} and $\frac{d f}{d x}$ are themselves functions
- If f is differentiable, we can find f^{\prime} first and plug-in to get $f\left(x_{0}\right)$

Derivative as a Function

Definition

Suppose f is differentiable for all $x \in X$.
The derivative of the function $f(x)$ is defined by

$$
f^{\prime}(x) \equiv \frac{d f}{d x}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Equivalent to the previous definition (replace x with $x+h$ and x_{0} with x) but cleaner (not specific to a point x_{0})
- Note: f^{\prime} and $\frac{d f}{d x}$ are themselves functions
- If f is differentiable, we can find f^{\prime} first and plug-in to get $f\left(x_{0}\right)$
- For a line, the derivative is the slope

Derivative as a Function

Definition

Suppose f is differentiable for all $x \in X$.
The derivative of the function $f(x)$ is defined by

$$
f^{\prime}(x) \equiv \frac{d f}{d x}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Equivalent to the previous definition (replace x with $x+h$ and x_{0} with x) but cleaner (not specific to a point x_{0})
- Note: f^{\prime} and $\frac{d f}{d x}$ are themselves functions
- If f is differentiable, we can find f^{\prime} first and plug-in to get $f\left(x_{0}\right)$
- For a line, the derivative is the slope
- For a curve, the derivative is the slope of the line tangent to the curve at each x

Calculating Derivatives

- Let's first do some examples:
- $f(x)=3 x, f^{\prime}(x)=$?

Calculating Derivatives

- Let's first do some examples:
- $f(x)=3 x, f^{\prime}(x)=$?
- $f(x)=x^{2}, f^{\prime}(x)=$?

Calculating Derivatives

- Let's first do some examples:
- $f(x)=3 x, f^{\prime}(x)=$?
- $f(x)=x^{2}, f^{\prime}(x)=$?
- $f(x)=1 / x, f^{\prime}(x)=$?

Calculating Derivatives

- Let's first do some examples:
- $f(x)=3 x, f^{\prime}(x)=$?
- $f(x)=x^{2}, f^{\prime}(x)=$?
- $f(x)=1 / x, f^{\prime}(x)=$?
- Rarely will we take limit to calculate derivative
- Rather, rely on rules and properties of derivatives

Calculating Derivatives

- Let's first do some examples:
- $f(x)=3 x, f^{\prime}(x)=$?
- $f(x)=x^{2}, f^{\prime}(x)=$?
- $f(x)=1 / x, f^{\prime}(x)=$?
- Rarely will we take limit to calculate derivative
- Rather, rely on rules and properties of derivatives
- Important: Do not forget core intuition
- Strategy: Work on problems

Rules of Differentiation

Rules of Differentiation

$$
f(x)=c \quad f^{\prime}(x)=0
$$

Rules of Differentiation

Rules of Differentiation

$$
\begin{array}{ll}
f(x)=c & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1
\end{array}
$$

Rules of Differentiation

Rules of Differentiation

$$
\begin{array}{ll}
f(x)=c & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1 \\
f(x)=x^{k} & f^{\prime}(x)=k \cdot x^{k-1}
\end{array}
$$

(Power, Polynomial)

Rules of Differentiation

Rules of Differentiation

$$
\begin{array}{ll}
f(x)=c & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1 \\
f(x)=x^{k} & f^{\prime}(x)=k \cdot x^{k-1} \\
f(x)=e^{x} & f^{\prime}(x)=e^{x}
\end{array}
$$

(Power, Polynomial)
(Exponential)

Rules of Differentiation

Rules of Differentiation

$$
\begin{array}{ll}
f(x)=c & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1 \\
f(x)=x^{k} & f^{\prime}(x)=k \cdot x^{k-1} \\
f(x)=e^{x} & f^{\prime}(x)=e^{x} \\
f(x)=\ln (x) & f^{\prime}(x)=\frac{1}{x}
\end{array}
$$

(Power, Polynomial)
(Exponential)
(Logarithm)

Rules of Differentiation

Rules of Differentiation

$$
\begin{array}{ll}
f(x)=c & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1 \\
f(x)=x^{k} & f^{\prime}(x)=k \cdot x^{k-1} \\
f(x)=e^{x} & f^{\prime}(x)=e^{x} \\
f(x)=\ln (x) & f^{\prime}(x)=\frac{1}{x} \\
f(x)=\sin (x) & f^{\prime}(x)=\cos (x)
\end{array}
$$

(Power, Polynomial)
(Exponential)
(Logarithm)
(Trigonometrics)

Rules of Differentiation

Rules of Differentiation

$$
\begin{array}{ll}
f(x)=c & f^{\prime}(x)=0 \\
f(x)=x & f^{\prime}(x)=1 \\
f(x)=x^{k} & f^{\prime}(x)=k \cdot x^{k-1} \\
f(x)=e^{x} & f^{\prime}(x)=e^{x} \\
f(x)=\ln (x) & f^{\prime}(x)=\frac{1}{x} \\
f(x)=\sin (x) & f^{\prime}(x)=\cos (x) \\
f(x)=\cos (x) & f^{\prime}(x)=-\sin (x)
\end{array}
$$

(Power, Polynomial)
(Exponential)
(Logarithm)
(Trigonometrics)

How to Do Operations

Algebra of Differentiation

Suppose f and g are both differentiable.

$$
\begin{equation*}
h(x)=c f(x) \quad h^{\prime}(x)=c f^{\prime}(x) \tag{Constant}
\end{equation*}
$$

How to Do Operations

Algebra of Differentiation

Suppose f and g are both differentiable.

$$
\begin{array}{ll}
h(x)=c f(x) & h^{\prime}(x)=c f^{\prime}(x) \\
h(x)=f(x)+g(x) & h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
\end{array}
$$

(Constant)
(Summation)

How to Do Operations

Algebra of Differentiation

Suppose f and g are both differentiable.

$$
\begin{aligned}
& h(x)=c f(x) \\
& h(x)=f(x)+g(x) \\
& h(x)=f(x) g(x)
\end{aligned}
$$

$$
h^{\prime}(x)=c f^{\prime}(x)
$$

(Constant)

$$
h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

(Summation)

$$
h^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
$$

(Product)

How to Do Operations

Algebra of Differentiation

Suppose f and g are both differentiable.

$$
\begin{array}{ll}
h(x)=c f(x) & h^{\prime}(x)=c f^{\prime}(x) \\
h(x)=f(x)+g(x) & h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) \\
h(x)=f(x) g(x) & h^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x) \\
h(x)=\frac{f(x)}{g(x)} & h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g(x)^{2}}
\end{array}
$$

(Constant)
(Summation)
(Product)
(Quotient)

Differentiation: Examples

- Find the derivative of $f(x)=\left(x^{3}\right)\left(2 x^{4}\right)$

Differentiation: Examples

- Find the derivative of $f(x)=\frac{x^{2}+1}{x^{2}-1}$

Differentiation: Examples

- Show that $\left(x^{k}\right)^{\prime}=k \cdot x^{k-1}$
- Hint: By induction, suppose holds for $k-1$, show holds for k

Differentiation: Examples

- Show that $\left(\log _{a}(x)\right)^{\prime}=\frac{1}{x \ln (a)}$
- Hint: $\log _{a}(x)=\frac{\ln x}{\ln a}$ (since if $y=\log _{a}(x), a^{y}=x$, take \ln)

Chain Rule: Derivative of Composite Functions

Chain Rule

Suppose both f and g are differentiable. The derivative of $(f \circ g)(x) \equiv f[g(x)]$ is

$$
\frac{d}{d x}(f[g(x)])=f^{\prime}[g(x)] g^{\prime}(x)
$$

Or, equivalently,

$$
(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

- Intuitively, we can think of f as a function of g and g as a function of x and write

$$
\frac{d f(g(x))}{d x}=\frac{d f(g)}{d g} \cdot \frac{d g(x)}{d x}, \quad \text { or, } \frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}
$$

- x changes f indirectly: First x affects g by $\frac{d g}{d x}$, then g affects f by $\frac{d f}{d g}$

Chain Rule: Examples

- Find $d y / d x$ for $y=\left(3 x^{2}+5 x-7\right)^{6}$
- Hint: Let $f(z)=z^{6}$ and $z=g(x)=3 x^{2}+5 x-7$

Chain Rule: Examples

- Find $d y / d x$ for $y=\sin \left(x^{3}+4 x\right)$
- Hint: Let $f(z)=\sin (z)$ and $z=g(x)=x^{3}+4 x$

Chain Rule: Examples

- Show that $\left(a^{x}\right)^{\prime}=a^{x}(\ln (a))$
- Hint: $a^{x}=e^{\ln a^{x}}=e^{x \ln a}$ (very important substitution)
- Note: $\left(a^{x}\right)^{\prime}=c \cdot a^{x}$ suggests exponential function is proportional to its own derivative!
- e is the base a such that the proportion c is 1 , and this is precisely why $\left(e^{x}\right)^{\prime}=e^{x}$

Chain Rule: Examples

- Show the Generalized Power Rule:

$$
\text { Let } y=[g(x)]^{n}, \quad \text { then } \frac{d y}{d x}=n[g(x)]^{n-1} g^{\prime}(x)
$$

Chain Rule: Examples

- Show that

$$
\left(e^{u(x)}\right)^{\prime}=e^{u(x)} u^{\prime}(x)
$$

Chain Rule: Examples

- Show that, for $u(x)>0$,

$$
(\ln u(x))^{\prime}=\frac{u^{\prime}(x)}{u(x)}
$$

Higher-Order Derivatives

- What about the derivative of $f^{\prime}(x)$ with respect to x ?

$$
f^{\prime \prime}(x) \equiv f^{(2)}(x) \equiv \frac{d}{d x}\left(\frac{d f}{d x}\right)(x) \equiv \frac{d^{2} f}{d x^{2}}(x) \equiv \lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}
$$

- We can similarly define the derivatives of $f^{\prime \prime}(x)$, and so on

Higher-Order Derivatives: Example

- $f(x)=x^{3}$, find $f^{\prime}, f^{(2)}, f^{(3)}, f^{(4)}$

Increasing or Decreasing Functions

- Derivatives inform us about the shape of a function
- The first derivative, $f^{\prime}(x)$, identifies whether the function $f(x)$ at the point x is increasing or decreasing at x
- $f^{\prime}(x)>0 \Rightarrow$ Increasing
- $f^{\prime}(x)<0 \Rightarrow$ Decreasing
- $f^{\prime}(x)=0 \Rightarrow$ Neither increasing nor decreasing (i.e. max, min, or saddle point)

Increasing or Decreasing Functions: Example

- Determine where the function increase or decrease

$$
f(x)=x^{2}
$$

Increasing or Decreasing Functions: Example

- Determine where the function increase or decrease

$$
f(x)=x^{3}
$$

Minima: Example

$$
f(x)=x^{2}
$$

Saddle Point: Example

$$
f(x)=x^{3}
$$

Convex or Concave Functions

- The second derivative informs us how the function is bending (curvature)
- The second derivative, $f^{\prime \prime}(x)$, identifies whether the function f is concave or convex around x
- If $f^{\prime \prime}(x)>0 \Rightarrow$ Convex
- If $f^{\prime \prime}(x)<0 \Rightarrow$ Concave

Optimization

Extreme Value Theorem

Suppose $f:[a, b] \rightarrow \mathbb{R}$ and that f is continuous. Then f obtains its extreme values (maximum and minimum) on $[a, b]$.

Corollary

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable, and that neither $f(a)$ nor $f(b)$ is the extreme value. Then f obtains its extreme values on (a, b) and if $f\left(x_{0}\right)$ is the extreme value of f with $x_{0} \in(a, b)$ then, $f^{\prime}\left(x_{0}\right)=0$.

Solving Optimization

- Find $f^{\prime}(x)$ (First Order Condition)
- Set $f^{\prime}(x)=0$ and solve for x
- Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values
- Find $f^{\prime \prime}(x)$ (Second Order Condition) and evaluate at each x_{0}
- If $f^{\prime \prime}\left(x_{0}\right)>0$, Convex, local minimum
- If $f^{\prime \prime}\left(x_{0}\right)<0$, Concave, local maximum
- If $f^{\prime \prime}\left(x_{0}\right)=0$, Inconclusive, local minimum, maximum, or saddle point
- Check end points and compare them with local extremum

(a)

(b)

(c)

Optimization: Examples

- Find all maxima and minima:

$$
f(x)=x^{3}-3 x \text { for } x \in[-2,5]
$$

Optimization: Examples

- Find all maxima and minima:

$$
f(x)=\ln (x)-x \text { for } x>0
$$

