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Motivation

• Linear algebra or matrix algebra avoids the mess and lets us solve for things we
care about quickly, cleanly and easily

• This is no different than algebra. Consider the difference in the following
formulas for the mean:

̄𝑥 = 𝑥1 + 𝑥2
𝑛

̄𝑥 = 𝑥1 + 𝑥2 + 𝑥3
𝑛

̄𝑥 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4
𝑛

̄𝑥 = ∑𝑛
𝑖=1 𝑥𝑖
𝑛
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Motivation

• Similarly, matrix algebra is a form of notation that cleans up the mess when
working with more complex formulas. So suspend disbelief and concern, and
treat this as a new language you are learning.

• Think of this as algebra on steroids.
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Motivation

Why are we studying matrix algebra?
• Matrices are an intuitive way to think about data.
• We have a set of observations (perhaps individuals) on the row, and observe

many different characteristics (such as race, gender, PID, etc.) corresponding to
columns.

• We will use matrix algebra to derive the least squares estimator.
• Matrices are useful for solving systems of equations, like multiple regression.
• Notation is much more compact and concise.
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Points and Vectors

• A point in ℝ
▶ 1
▶ 𝜋
▶ 𝑒

• A point in ℝ2
▶ (1, 2)
▶ (𝜋, 𝑒)

• A point 𝐱 in ℝ𝑛
▶ (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

• Vector: arrow pointing from the origin to the point
• Draw some examples in 1d, 2d, row and column vectors
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Vector Addition and Subtraction

If two vectors, 𝐮 and 𝐯, have the same size (i.e. have the same number of elements),
they can be added (subtracted) together:

𝐮 + 𝐯 =
⎡⎢⎢⎢
⎣

𝑢1 + 𝑣1
𝑢2 + 𝑣2

⋮
𝑢𝑘 + 𝑣𝑛

⎤⎥⎥⎥
⎦

𝐮 − 𝐯 =
⎡⎢⎢⎢
⎣

𝑢1 − 𝑣1
𝑢2 − 𝑣2

⋮
𝑢𝑘 − 𝑣𝑛

⎤⎥⎥⎥
⎦

• Draw geometrical interpretations of addition and subtraction
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Example: Vector Addition

0 1 2 3 4 5

0
1

2
3

4
5

X

Y

a1, a2

b1, b2

a1 + b1, a2 + b2
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Scalar Multiplication

The product of a scalar 𝑐 (i.e. a constant) and vector 𝐯 is:

𝑐𝐯 =
⎡⎢⎢⎢
⎣

𝑐𝑣1
𝑐𝑣2
…
𝑐𝑣𝑛

⎤⎥⎥⎥
⎦

• Draw geometrical interpretations scalar multiplication
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Exercise

• 𝐚 = [27]

• 𝐛 = [−23 ]
• 𝐚 − 𝐛=?
• −3 ⋅ (𝐚 − 𝐛)=?
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Special Vectors
Zero Vector: A vector of all zeros. Eg. For ℝ3,

𝟎3 = [
0
0
0
]

Standard Unit Vectors: Vectors whose components are all 0, except one that
equals 1.
• For ℝ2, the standard unit vectors are:

𝐞1 = [10] , and 𝐞2 = [01]

• For ℝ3, the standard unit vectors are:

𝐞1 = [
1
0
0
] , 𝐞2 = [

0
1
0
] , and 𝐞3 = [

0
0
1
]
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Linear combination

The vector 𝐮 is a linear combination of the vectors 𝐯1, 𝐯2, ⋯ , 𝐯𝑘 if

𝐮 = 𝑐1𝐯1 + 𝑐2𝐯2 + ⋯ + 𝑐𝑘𝐯𝑘
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Exercise

Represent [
𝑎
𝑏
𝑐
] as linear combination of the unit vectors [

1
0
0
], [

0
1
0
], and [

0
0
1
].

• Notice that you can always represent one vector into linear combinations of the
unit vectors, where the coefficients are the elements in each coordinates.
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Matrix
A way to store data. A dataframe is a matrix (with column/row names).

(df = head(mtcars))

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

dim(df)

[1] 6 11 13 / 69



Matrix

Each row of a matrix is a (row) vector

df["Mazda RX4", ] # equivalently mtcars[1, ]

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4

Each column of a matrix is also a vector

df[ , "mpg"] # equivalently mtcars$mpg or mtcars[ , 1]

[1] 21.0 21.0 22.8 21.4 18.7 18.1
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Matrix

A matrix of size𝑚 × 𝑛 is an array of real numbers arranged in𝑚 rows by 𝑛 columns.
The dimensionality of the matrix is defined as the number of rows by the number of
columns,𝑚 × 𝑛.

𝐀 =
⎡⎢⎢⎢
⎣

𝐴11 𝐴12 ⋯ 𝐴1𝑛
𝐴21 𝐴22 ⋯ 𝐴2𝑛
⋮ ⋮ ⋱ ⋮

𝐴𝑚1 𝐴𝑚2 ⋯ 𝐴𝑚𝑛

⎤⎥⎥⎥
⎦

• Number of rows is always the first index
• The element of matrix𝐀 corresponding to row 𝑖 and column 𝑗 is written𝐴𝑖𝑗
• You can think of vectors as special cases of matrices

▶ A column vector of length 𝑘 is a 𝑘 × 1matrix
▶ A row vector of the same length is a 1 × 𝑘 matrix.
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Exercise

𝐖 = [ 1 3
2 −6 ]

• Size?
• We call these kind of matrix “square matrix”

Γ =
⎡⎢⎢⎢
⎣

1 4
1 3
1 −2
0 3

⎤⎥⎥⎥
⎦

• Size?
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Some Notations

• We can write𝐀 as collection of column vectors:

𝐀 = [𝐚1|𝐚2| … |𝐚𝑛] = [
↑ ↑ ↑ … ↑
𝐚1 𝐚2 𝐚3 … 𝐚𝑛
↓ ↓ ↓ … ↓

] .

• Similarly, we can write𝐀 as a collection of row vectors:

𝐀 =
⎡⎢⎢⎢
⎣

𝐚′1
𝐚′2
⋮

𝐚′𝑚

⎤⎥⎥⎥
⎦
=

⎡⎢⎢⎢
⎣

⟵ 𝐚′1 ⟶
⟵ 𝐚′2 ⟶
⋮ ⋮ ⋮

⟵ 𝐚′𝑚 ⟶

⎤⎥⎥⎥
⎦
.

• Sometimes, we will want to refer to both rows and columns in the same context.
In these situations, we may use𝐀𝑖⋆ to reference the 𝑖-th row and𝐀⋆𝑗 to reference
the 𝑗-th column.
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Matrix Addition and Subtraction

Let𝐀 and 𝐁 be two𝑚 × 𝑛 matrices.

𝐀 + 𝐁 =
⎡⎢⎢⎢
⎣

𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯ 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏21 𝑎22 + 𝑏22 ⋯ 𝑎2𝑛 + 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛

⎤⎥⎥⎥
⎦

𝐀 − 𝐁 =
⎡⎢⎢⎢
⎣

𝑎11 − 𝑏11 𝑎12 − 𝑏12 ⋯ 𝑎1𝑛 − 𝑏1𝑛
𝑎21 − 𝑏21 𝑎22 − 𝑏22 ⋯ 𝑎2𝑛 − 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 − 𝑏𝑚1 𝑎𝑚2 − 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 − 𝑏𝑚𝑛

⎤⎥⎥⎥
⎦

• Note that matrices𝐀 and 𝐁must have the same size for addition and subtraction
to be defined
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Scalar Multiplication

Given the scalar 𝑠, the scalar multiplication of 𝑠𝐀 is

𝑠𝐀 = 𝑠
⎡⎢⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤⎥⎥⎥
⎦
=

⎡⎢⎢⎢
⎣

𝑠𝑎11 𝑠𝑎12 ⋯ 𝑠𝑎1𝑛
𝑠𝑎21 𝑠𝑎22 ⋯ 𝑠𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑠𝑎𝑚1 𝑠𝑎𝑚2 ⋯ 𝑠𝑎𝑚𝑛

⎤⎥⎥⎥
⎦
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Exercise

𝐀 = [
1 −2
0 5
4 3

] 𝐁 = [
3 9
−1 1
0 2

]

• Find𝐀 + 𝐁
• Find 2 ⋅ (𝐀 + 𝐁)

20 / 69



Transpose

The transpose of the𝑚 × 𝑛 matrix𝐴 is the 𝑛 × 𝑚 matrix𝐀⊤ (also written𝐀′) obtained
by interchanging the rows and columns of𝐴.
In other words, the (𝑖, 𝑗)-th element of𝐀⊤ is the (𝑗, 𝑖)-th element of𝐀.

(𝐀⊤)𝑖𝑗 = 𝐀𝑗𝑖

• Example: 𝐀 = [4 −2 3
0 5 −1], find𝐀⊤

• Example: 𝐁 = [
2
−1
3
], find 𝐁⊤
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Properties

1. (𝐀 + 𝐁)⊤ = 𝐀⊤ + 𝐁⊤

2. (𝐀⊤)⊤ = 𝐀
3. (𝑠𝐀)⊤ = 𝑠𝐀⊤

4. (𝐀𝐁)⊤ = 𝐁⊤𝐀⊤
▶ Also, (𝐀𝐁𝐂)⊤ = 𝐂⊤𝐁⊤𝐀⊤, and so on
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Special Matrices

• Square matrix: Matrix with the same number of rows and columns

𝐴3×3 = [
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

]

• Diagonal matrix: Square matrix with all the elements outside the main diagonal
are zero

𝐷3×3 = [
𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

]

• Identity matrix: Square matrix with ones on the diagonal and zeros elsewhere

𝐼3×3 = [
1 0 0
0 1 0
0 0 1

]
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Special Matrices

• Symmetric matrix: If𝐀 is a symmetric matrix, then

𝐀 = 𝐀⊤

▶ We also know that
𝐴𝑖𝑗 = 𝐴𝑗𝑖 for all (𝑖, 𝑗)

• Zero matrix: Matrix of all zeros
▶ Ex. The 3 × 4 zero matrix is given by

𝟎3×4 = [
0 0 0 0
0 0 0 0
0 0 0 0

]
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Vector Inner Product
• We want to summarize the similarity between two vectors
• Draw some examples of vectors pointing in different directions

▶ If similar (pointing in similar direction)→ positive
▶ If pointing in opposite directions→ negative
▶ If perpendicular→ zero

Inner Product: The inner product (dot product) of 𝐮 and 𝐯 is defined as

𝐮 ⋅ 𝐯 = 𝐮⊤𝐯 =
𝑛
∑
𝑖=1

𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯𝑢𝑛𝑣𝑛.

• 𝐮 and 𝐯must be of the same size
• The inner product is a scalar quantity, 𝐮 ⋅ 𝐯 = 𝐯 ⋅ 𝐮
• If 𝐮 ⋅ 𝐯 = 0, the two vectors are orthogonal (or perpendicular).

• Example: 𝐮 = [
1
2
3
], 𝐯 = [

4
5
6
], find 𝐮 ⋅ 𝐯
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Intuition behind Inner Product

Consider the case of two-dimensions. Denote

𝐚 = [𝑎𝑥𝑎𝑦] 𝐛 = [𝑏𝑥𝑏𝑦]

• Find 𝐚 ⋅ 𝐛
• Draw 𝐚 and 𝐛 as vector addition on the directions of 𝑥 and 𝑦 axes
• Since 𝑥 and 𝑦 axis are perpendicular to each other, the inner product between

the directions of 𝑥 and 𝑦 axes are zero, thus we have

𝐚 ⋅ 𝐛 = 𝑎𝑥𝑏𝑥 [10]
⊤
[10]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=1⋅1+0⋅0=1

+𝑎𝑥𝑏𝑦 [10]
⊤
[01]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=1⋅0+0⋅1=0

+𝑎𝑦𝑏𝑥 [01]
⊤
[10]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0⋅1+1⋅0=0

+𝑎𝑦𝑏𝑦 [01]
⊤
[01]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0⋅0+1⋅1=1
= 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦
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Exercise

Given a data vector

𝐱 =
⎡⎢⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤⎥⎥⎥
⎦

• How can you express the sum of the data?
• How can you express the average of the data?
• How can you express the sum of squared of the data?
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Vector Norm

The norm of a vector is a measure of its length. There are many different ways to
calculate the norm, but the most common is the Euclidean norm (which
corresponds to our usual conception of distance):

‖𝐯‖ = √𝐯 ⋅ 𝐯 = √𝐯⊤𝐯 = √𝑣21 + 𝑣22 + ⋯ + 𝑣2𝑛 .
This is merely measuring the distance between the point 𝐯 and the origin.
To compute the distance between two different points, say 𝐱 and 𝐲, we’d calculate

‖𝐱 − 𝐲‖ = √(𝐱 − 𝐲)⊤(𝐱 − 𝐲)
= √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2
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Matrix Multiplication

• Matrix multiplication is collecting many inner products
• Let𝐀 be a𝑚 × 𝑛 matrix and 𝐁 be a 𝑘 × 𝑝 matrix. The matrix product𝐀𝐁 is

possible if and only if 𝑛 = 𝑘
• If this condition holds, then the the product,𝐀𝐁, is a𝑚 × 𝑝 matrix and the (𝑖, 𝑗)

entry of the product𝐀𝐁 is the inner product of the 𝑖th row of𝐀 and the 𝑗th
column of 𝐁:

(𝐀𝐁)𝑖𝑗 = 𝐀𝑖⋆ ⋅ 𝐁⋆𝑗

𝐀𝐁 =
⎡⎢⎢⎢
⎣

⟵ 𝐚1 ⟶
⟵ 𝐚2 ⟶
⋮ ⋮ ⋮

⟵ 𝐚𝑚 ⟶

⎤⎥⎥⎥
⎦
[
↑ ↑ … ↑
𝐛1 𝐛2 … 𝐛𝑝
↓ ↓ … ↓

] =
⎡⎢⎢⎢
⎣

𝐚1 ⋅ 𝐛1 ⋯ 𝐚1 ⋅ 𝐛𝑝
𝐚2 ⋅ 𝐛1 ⋯ 𝐚2 ⋅ 𝐛𝑝

⋮ ⋱ ⋮
𝐚𝑚 ⋅ 𝐛1 ⋯ 𝐚𝑚 ⋅ 𝐛𝑝

⎤⎥⎥⎥
⎦

where 𝐚𝑖 is the 𝑖th row of𝐀 and 𝐛𝑗 is the 𝑗th column of 𝐁
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Exercise

𝐀𝐁 = [
1 −2
0 5
4 3

] [ 3 1 4
−1 2 5 ]

= [
(1 × 3) + (−2 × −1) (1 × 1) + (−2 × 2) (1 × 4) + (−2 × 5)
(0 × 3) + (5 × −1) (0 × 1) + (5 × 2) (0 × 4) + (5 × 5)
(4 × 3) + (3 × −1) (4 × 1) + (3 × 2) (4 × 4) + (3 × 5)

]

= [
3 + 2 1 − 4 4 − 10
0 − 5 0 + 10 0 + 25
12 − 3 4 + 6 16 + 15

]

= [
5 −3 −6
−5 10 25
9 10 31

]
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Exercise

𝐀 = [
1 −2
0 5
4 3

] 𝐁 = [ 3 1 4
−1 2 5 ]

• Can we calculate𝐀𝐁?
• What is the size of𝐀𝐁?
• What is𝐀𝐁?
• Can we calculate 𝐁𝐀?
• What is the size of 𝐁𝐀?
• What is 𝐁𝐀?
• Does𝐀𝐁 = 𝐁𝐀?
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Properties

1. (𝐀 + 𝐁) + 𝐂 = 𝐀 + (𝐁 + 𝐂)
2. (𝐀𝐁)𝐂 = 𝐀(𝐁𝐂)
3. 𝐀 + 𝐁 = 𝐁 + 𝐀
4. 𝐀(𝐁 + 𝐂) = 𝐀𝐁 + 𝐀𝐂
5. (𝐀 + 𝐁)𝐂 = 𝐀𝐂 + 𝐁𝐂
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Matrix-Vector Product

• What if we want to multiply matrix and vector?
• Matrix-vector product works exactly the same way as matrix multiplication
• For example, if we have an𝑚 × 𝑛 matrix𝐀, we can
• Multiply by a 1 × 𝑚 row vector 𝐯⊤ on the left

𝐯⊤𝐀 works because 𝐯⊤
(1×𝑚)

𝐀
(𝑚×𝑛)

⇒ Getting a 1 × 𝑛 row vector

• Multiply by an 𝑛 × 1 column vector 𝐱 on the right

𝐀𝐱 works because 𝐀
(𝑚×𝑛)

𝐱
(𝑛×1)

⇒ Getting an𝑚 × 1 column vector
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Exercise

𝐀 = [
2 3
−1 4
5 1

] 𝐯 = [32] 𝐪 = [
2
−1
3
]

• Find𝐀𝐪
• Find𝐀𝐯
• Find 𝐪⊤𝐀
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Matrix-Vector Product is Linear Combination

Let𝐀 be an𝑚 × 𝑛 matrix partitioned into columns,

𝐀 = [
↑ ↑ … ↑
𝐚1 𝐚2 … 𝐚𝑛
↓ ↓ … ↓

]

Let 𝐱 be a 𝑛-dimensional vector

𝐱 = [
𝑥1
⋮
𝑥𝑛

]

Then,𝐀𝐱 is the linear combination of the columns of𝐀 using coefficients in 𝐱:
𝐀𝐱 = 𝑥1𝐚1 + 𝑥2𝐚2 + ⋯ + 𝑥𝑛𝐚𝑛
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Matrix Multiplication as Linear Combinations
• Matrix multiplication: applying matrix-vector product by columns
• Consider 𝐀𝑚×𝑛𝐁𝑛×𝑝 = 𝐂𝑚×𝑝
• The first column of 𝐂 is the linear combination of the columns of𝐀 using

coefficients in the first column of 𝐁:

𝐀 = [
↑ ↑ … ↑
𝐚1 𝐚2 … 𝐚𝑛
↓ ↓ … ↓

] 𝐛1 =
⎡⎢⎢⎢
⎣

𝑏11
𝑏21
⋮

𝑏𝑛1

⎤⎥⎥⎥
⎦

𝐂1 = 𝑏11𝐚1 + 𝑏21𝐚2 + ⋯ + 𝑏𝑛1𝐚𝑛 = 𝐀𝐛1
• That is, 𝐂1 is the matrix-vector product of𝐀 and 𝐛1
• Doing this for each columns of 𝐂, we get

𝐂 = [
↑ ↑ … ↑
𝐜1 𝐜2 … 𝐜𝑝
↓ ↓ … ↓

] = [
↑ ↑ … ↑

𝐀𝐛1 𝐀𝐛2 … 𝐀𝐛𝑝
↓ ↓ … ↓

]
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Earlier Example

𝐀𝐁 = [
1 −2
0 5
4 3

] [ 3 1 4
−1 2 5 ]

= [
(1 × 3) + (−2 × −1) (1 × 1) + (−2 × 2) (1 × 4) + (−2 × 5)
(0 × 3) + (5 × −1) (0 × 1) + (5 × 2) (0 × 4) + (5 × 5)
(4 × 3) + (3 × −1) (4 × 1) + (3 × 2) (4 × 4) + (3 × 5)

]

= [ 3(
1
0
4
) − 1(

−2
5
3
) 1(

1
0
4
) + 2(

−2
5
3
) 4(

1
0
4
) + 5(

−2
5
3
) ]

= [
5 −3 −6
−5 10 25
9 10 31

]
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An Important Motivating Example

• Calculate [3 1
1 2] [

−1
2 ] and (−1) [31] + (2) [12]

• Are they the same? Why?
• Draw the geometric interpretation of the latter

• Suppose now

[3 1
1 2] [

𝑥
𝑦] = [−13 ] ,

What is (𝑥, 𝑦)?
• Interpret the following two expressions geometrically:

[3𝑥 + 1𝑦
1𝑥 + 2𝑦] = [−13 ] and 𝑥 [31] + 𝑦 [12] = [−13 ]

• Row: Solving system of equations↔ Col: Finding linear combinations
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Row perspective: Solving system of linear equations

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

(−1, 2)

3x+y=−1

x+2y=3
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Column perspective: Finding linear combinations

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

4

x

y

(3, 1)

(1, 2)

(−1, 3)

 × −1

 × 2
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Linear Regression
Suppose we have data for 𝑛 observations. For each observation 𝑖, we observe
covariates 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 and dependent variable 𝑦𝑖. Then

𝑦1 = 𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 + … + 𝛽𝑝𝑥1𝑝
𝑦2 = 𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 + … + 𝛽𝑝𝑥2𝑝
⋮ ⋮ ⋮

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑝𝑥𝑖𝑝
⋮ ⋮ ⋮

𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 + … + 𝛽𝑝𝑥𝑛𝑝
• Example:

▶ 𝑖: Countries 𝑦𝑖: Democracy 𝑥𝑖1: GDP 𝑥𝑖2: Gini
• We want to know 𝛽0, 𝛽1, 𝛽2 such that the model fits the data well

▶ Solve system of equations (computer to the rescue!)
• We’re expressing Democracy as a linear combinations of GDP and Gini
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Linear Regression Notations

• Recall that matrix-vector product is linear combination!!
• So we can write the above expression in matrix-vector product

⎡⎢⎢⎢
⎣

𝑦0
𝑦1
⋮
𝑦𝑛

⎤⎥⎥⎥
⎦⏟

𝐲

=
⎡⎢⎢⎢
⎣

1 𝑥11 𝑥12 … 𝑥1𝑝
1 𝑥21 𝑥22 … 𝑥2𝑝
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑝

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐗

⎡⎢⎢⎢
⎣

𝛽0
𝛽1
⋮
𝛽𝑝

⎤⎥⎥⎥
⎦⏟

𝜷
• We can also write the 𝑖-th observation in vector inner product

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑝𝑥𝑖𝑝
= 𝐱⊤𝑖 𝜷

where 𝐱𝑖 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) is the 𝑖-th row of𝐗
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System of Linear Equations

• Back to the important example. How would you solve

{3𝑥 + 𝑦 = −1
𝑥 + 2𝑦 = 3

• You’re multiplying each equation by some constants and adding to another
▶ This is the so-called Gauss-Jordan elimination
▶ You already know how to solve them; complicated ones are solved by computer

• For 2 equations and 2 unknowns
▶ Each equation is a line
▶ The intersection of the lines is the solution
▶ Draw some examples with different number of solutions
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System of Linear Equations

• We can write system of linear equations as matrix-vector product

[3 1
1 2] [

𝑥
𝑦] = [−13 ] ,

• We can easily read-off the solution if the matrix is identity matrix

[1 0
0 1] [

𝑥
𝑦] = [𝑎𝑏] ,

⇒ [𝑥𝑦] = [𝑎𝑏]
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System of Linear Equations
• What about when things are a little more complicated?

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮ ⋱ ⋮ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

• We can still write this as matrix-vector product

𝐀𝐱 = 𝐛
• Our goal is to find some matrix𝐐 such that

𝐐𝐀 = 𝐈
• Becasue in such case, we calculate 𝐱 easily:

𝐐𝐀𝐱 = 𝐐𝐛 𝐈𝐱 = 𝐐𝐛 𝐱 = 𝐐𝐛
• When such matrix𝐐 exists, we call it the inverse of𝐀, denoted𝐀−1
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Matrix Inverse

An 𝑛 × 𝑛 matrix𝐀 is invertible if there exists an 𝑛 × 𝑛 matrix𝐀−1 such that

𝐀−1𝐀 = 𝐈𝑛
• 𝐀−1 is called the inverse of𝐀
• 𝐀−1 is only defined for square matrices
• If there is no such𝐀−1, then𝐀 is called singular
• NOT all matrices are invertible

▶ Idea: For scalar 𝑎, 𝑎−1𝑎 = 1 except for 𝑎 = 0
▶ For example,𝐀 = [1 2

2 4] is singular and not invertible

▶ We will discuss this in more detail later
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Properties

• If the inverse exists, it is unique
• 𝐀𝐀−1 = 𝐀−1𝐀
• (𝐀−1)−1 = 𝐀
• (𝐀𝐁)−1 = 𝐁−1𝐀−1
• (𝐀⊤)−1 = (𝐀−1)⊤
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FindingMatrix Inverse

X = matrix(NA, nrow=3, ncol=3)
X[1,] = c(2,3,4); X[2,] = c(3,1,3); X[3,] = c(2,4,2)
(X.inv = solve(X))

[,1] [,2] [,3]
[1,] -0.5 0.5 0.25
[2,] 0.0 -0.2 0.30
[3,] 0.5 -0.1 -0.35

round(X.inv%*%X)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1 48 / 69



Matrix Inverse and Linear Regression

• We can solve the linear regression problem using matrix inverse
• Notice that𝐗 is often not a square matrix, hence not invertible
• However,𝐗⊤𝐗 is always invertible as long as number of observations (rows) in𝐗

is larger than number of covariates (columns)

𝐗𝜷 = 𝐲
𝐗⊤𝐗𝜷 = 𝐗⊤𝐲

̂𝜷 = (𝐗⊤𝐗)−1𝐗⊤𝐲
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Example

• Dependent Variable: % Population as gov’t employee
• Covariates: Constant (1-vector), Per capita income

%GovEmp = 𝛽0 + 𝛽1PerCapInc

𝐲 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

19.2
14.5
16.4
21.8
17.3
18.2
15.5

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

𝐗 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

1 24, 028
1 30, 446
1 29, 442
1 23, 448
1 28, 235
1 26, 132
1 28, 445

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

𝜷 = [ 𝛽0
𝛽1 ]

• Want to find (𝛽0, 𝛽1)
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x = matrix(c(1, 1, 1, 1, 1, 1, 1,
24028, 30446, 29442, 23448, 28235, 26132, 28445),
ncol=2)

y = matrix(c(19.2, 14.5, 16.4, 21.8, 17.3, 18.2, 15.5), ncol=1)
print(x)

[,1] [,2]
[1,] 1 24028
[2,] 1 30446
[3,] 1 29442
[4,] 1 23448
[5,] 1 28235
[6,] 1 26132
[7,] 1 28445
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print(y)

[,1]
[1,] 19.2
[2,] 14.5
[3,] 16.4
[4,] 21.8
[5,] 17.3
[6,] 18.2
[7,] 15.5
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𝐗⊤𝐗 = [ 7 190, 176
190, 176 5, 210, 158, 442 ] , (𝐗⊤𝐗)−1 = [ 17.128 −0.001

−0.001 0.000 ]

𝐗⊤𝐲 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

1 24, 028
1 30, 446
1 29, 442
1 23, 448
1 28, 235
1 26, 132
1 28, 445

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

19.2
14.5
16.4
21.8
17.3
18.2
15.5

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

= [ 122.9
3, 301, 785.2 ]

̂𝜷 = (𝐗⊤𝐗)−1𝐗⊤𝐲
= [ 17.603 −0.001

−0.001 0.000 ] [ 122.9
3, 301, 785.2 ] = [ 40.7897

−0.0008 ]
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print(t(x)%*%x)

[,1] [,2]
[1,] 7 190176
[2,] 190176 5210158442

solve(t(x)%*%x)

[,1] [,2]
[1,] 17.1275170151 -6.251715e-04
[2,] -0.0006251715 2.301132e-08
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print(t(x)%*%y)

[,1]
[1,] 122.9
[2,] 3301785.2

solve(t(x)%*%x)%*%t(x)%*%y

[,1]
[1,] 40.7897669064
[2,] -0.0008551466
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summary(lm(y ~ x - 1))

Call:
lm(formula = y ~ x - 1)

Residuals:
1 2 3 4 5 6 7

-1.0423 -0.2540 0.7875 1.0617 0.6553 -0.2431 -0.9651

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x1 40.7897669 3.8460306 10.606 0.000129 ***
x2 -0.0008551 0.0001410 -6.066 0.001758 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9293 on 5 degrees of freedom
Multiple R-squared: 0.998, Adjusted R-squared: 0.9972
F-statistic: 1268 on 2 and 5 DF, p-value: 1.719e-07
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When is a Matrix Invertible?

The following statements for an 𝑛 × 𝑛 square matrix𝐀 are equivalent:
• 𝐀 is invertible:

𝐀−1 exists and𝐀−1𝐀 = 𝐈𝑛
• The system𝐀𝐱 = 𝐛 has a unique solution for all 𝐛 ≠ 𝟎 (zero vector)
• If𝐀𝐱 = 𝟎 (zero vector), it implies that 𝐱 = 𝟎 (zero vector)
• The column vectors in𝐀 are linearly independent and spans ℝ𝑛
• The rank of𝐀 is 𝑛:

rank(𝐀) = 𝑛
• The determinant of𝐀 is not zero:

det(𝐀) ≠ 0
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SomeMotivating Facts

• Identity Matrices are always invertible

𝐈−1𝑛 = 𝐈𝑛 𝐈−1𝑛 𝐈𝑛 = 𝐈𝑛
• Consider the 4-dimensional vectors, i.e, 𝐱 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) in ℝ4

▶ We can always express 𝐱 as a linear combination of columns in 𝐈4

𝐱 = 𝑥1
⎡⎢⎢⎢
⎣

1
0
0
0

⎤⎥⎥⎥
⎦
+ 𝑥2

⎡⎢⎢⎢
⎣

0
1
0
0

⎤⎥⎥⎥
⎦
+ 𝑥3

⎡⎢⎢⎢
⎣

0
0
1
0

⎤⎥⎥⎥
⎦
+ 𝑥4

⎡⎢⎢⎢
⎣

0
0
0
1

⎤⎥⎥⎥
⎦

▶ Can you express any 𝐱 using just 3 of the 4 elementary vectors?
• NO! Not enough vectors to reach all points (span) in ℝ4

▶ To reach all points in ℝ4, we need at least 4 vectors
▶ To reach all points in ℝ𝑛 , we need at least 𝑛 vectors
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Another Motivating Fact

• Can we always reach all points in ℝ𝑛 using at least 𝑛 vectors?
• Consider the case in ℝ2, can you reach all points using these vectors

{[21] , [21]} ?

{[21] , [42] , [−6−3]} ?

▶ NO as well. Sometimes the vectors are repeating the information
• How about these vectors in ℝ3? Can you reach all points in ℝ3 using these

vectors?

{[
1
0
1
] , [

0
1
1
] , [

1
1
2
]} ?

▶ Still NO. The summation of the first two vectors is the third vector. The third vector is
redundant and not adding new information. We can already point to the first two
directions
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Linear Independence
• Let’s write down the formal definition of “no redundant vectors”
• A set of vectors {𝐯1, 𝐯2, … , 𝐯𝑛}

is linearly independent if and only if
▶ 𝐯𝑖 is not a linear combination of the other vectors 𝐯𝑗 , i.e.,

𝐯𝑖 ≠ ∑
𝑗≠𝑖

𝑐𝑗𝐯𝑗 = 𝑐1𝐯1 + 𝑐2𝐯2 + ⋯ + 𝑐𝑛𝐯𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear combination excluding 𝐯𝑖

for all 𝑖

▶ Subtracting 𝐯𝑖, this is equivalent to

𝟎⏟
zero vector!

≠ −𝐯𝑖 + ∑
𝑗≠𝑖

𝑐𝑗𝐯𝑗 = 𝑐1𝐯1 + 𝑐2𝐯2 + ⋯ + (−1)𝐯𝑖 + ⋯ + 𝑐𝑛𝐯𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear combination of 𝐯1,𝐯2,…,𝐯𝑖,…,𝐯𝑛

for all 𝑖

▶ This is equivalent to saying: The only solution to

𝟎⏟
zero vector!

= 𝑐1𝐯1 + 𝑐2𝐯2 + ⋯ + 𝐯𝑖 + ⋯ + 𝑐𝑛𝐯𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear combination of 𝐯1,𝐯2,…,𝐯𝑖,…,𝐯𝑛

is 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0, i.e.,𝐀𝐱 = 𝟎 implies 𝐱 = 𝟎
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Another way of looking at the last definition

𝐚 + 𝐛 = −𝐜 1 ⋅ 𝐚 + 1 ⋅ 𝐛 + 1 ⋅ 𝐜 = 𝟎
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Linear Independence and Rank

• We say a set of vectors {𝐯1, 𝐯2, … , 𝐯𝑛} is linearly dependent if some vector 𝐯𝑖 is a
linear combination of the other vectors 𝐯𝑗

• If all vectors cannot be written as linear combinations of the other vectors, then
the set of vectors are linearly independent

• Are these vectors linearly independent?

([
1
0
0
]) ?

([
1
0
0
] [

0
1
0
]) ? ([

1
0
0
] [

0
1
0
] [

0
0
1
]) ?

([
1
0
0
] [

0
1
0
] [

0
0
1
] [

1
1
1
]) ? ([

1
0
0
] [

0
1
0
] [

0
0
1
] [

4
5
6
]) ?

• Themore vectors added, the easier they become redundant!
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Linear Independence, Rank, and Span

• Rank of a Matrix: Number of linearly independent columns in a matrix
▶ Rank for the examples above: 1, 2, 3, 3, 3

• We want to reach all 𝑛 coordinates using columns in𝐀𝑛×𝑛
▶ The more linearly independent vectors, the more coordinates we can reach

• We want to span as much coordinate as possible
• We want rank(𝐀) ≥ 𝑛

▶ But once we reached all 𝑛 coordinates, newly added vectors are redundant
• We also want to make sure all vectors are linearly independent
• We can only have rank(𝐀) ≤ 𝑛

▶ The only choice we left is to have rank(𝐀) = 𝑛
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Reiterate the equivalent conditions

The following statements for an 𝑛 × 𝑛 square matrix𝐀 are equivalent:
• 𝐀 is invertible:

𝐀−1 exists and𝐀−1𝐀 = 𝐈𝑛
• The system𝐀𝐱 = 𝐛 has a unique solution for all 𝐛 ≠ 𝟎 (zero vector)
• If𝐀𝐱 = 𝟎 (zero vector), it implies that 𝐱 = 𝟎 (zero vector)
• The column vectors in𝐀 are linearly independent and spans ℝ𝑛
• The rank of𝐀 is 𝑛:

rank(𝐀) = 𝑛
• The determinant of𝐀 is not zero (more on this)

det(𝐀) ≠ 0
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Determinant

• Usually not easy to calculate except for matrices of size 2 × 2
𝐀 = [ 𝑎 𝑏

𝑐 𝑑 ]
det(𝐀) = 𝑎𝑑 − 𝑏𝑐

• In 2 × 2 can think about it as the area of the parallelogram spanned by the
column vectors
▶ If the area is zero, then the parallelogram is a line
▶ Then we cannot reach all points and is thus not invertible
▶ If the area is not zero, then we can reach all points and is thus invertible
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Determinant for 2× 2Matrix
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Determinant for 3× 3Matrix
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Properties

• det(𝐈) = 1
• det(𝐀𝐁) = det(𝐀) det(𝐁)
• det(𝐀) = det(𝐀⊤)
• det(𝐀−1) = 1

det(𝐀)
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Inverse for 2× 2Matrix

• Usually not easy to calculate inverse except for matrices of size 2 × 2
𝐀 = [𝑎 𝑏

𝑐 𝑑]
det(𝐀) = 𝑎𝑑 − 𝑏𝑐

• If det(𝐀) ≠ 0, then𝐀 is invertible, and

𝐀−1 = 1
det(𝐀) [

𝑑 −𝑏
−𝑐 𝑎 ]
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