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In This Paper

• Previous social media ideology measures
▸ Are mostly for elites, and uses “following” of a fan page

▸ But people also consume news and process info. through posts

• We use 19B “likes” on posts of 2K US fan pages to scale ideology
▸ Also account for media, interest groups, parties, etc, and users

▸ Pages share similar ideology should share “likes” from similar users

▸ Adds time, post content, and region (guessed states) dimensions

• We predict 2016 US presidential election using this measure
▸ Derive state level FB support rates based on spatial model

▸ Compare with actual vote shares and state polls

• We nd under minimal assumptions, Facebook support rates:
▸ Predicts election quite well and shares similar trends with polls

▸ Overestimates winner’s vote share, but may enhance prediction
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Facebook Data

• Facebook provides fan page data through Graph API

• Specify fan page ideological universe

▸ 1475 fan pages of national politicians

↝Members and candidates of Senate, House, and Governors

▸ Top 1000 pages related to 2016 presidential election

↝ In Aug 2016, nd all pages mentioned “Trump” and “Clinton”

↝Weight by likes, comments, shares, nd top 1000 pages

↝ Includes all major news outlets, interest groups, parties, etc

↝ NYT, Fox News, NRA, RNC, Occupy Wall St, Tea Party, 9GAG, ...

• Collect all 24M posts in 2015 and 2016 on these pages

• And user’s 19B reactions (mostly likes) to these posts

2 / 32



Facebook Data

• Facebook provides fan page data through Graph API

• Specify fan page ideological universe

▸ 1475 fan pages of national politicians

↝Members and candidates of Senate, House, and Governors

▸ Top 1000 pages related to 2016 presidential election

↝ In Aug 2016, nd all pages mentioned “Trump” and “Clinton”

↝Weight by likes, comments, shares, nd top 1000 pages

↝ Includes all major news outlets, interest groups, parties, etc

↝ NYT, Fox News, NRA, RNC, Occupy Wall St, Tea Party, 9GAG, ...

• Collect all 24M posts in 2015 and 2016 on these pages

• And user’s 19B reactions (mostly likes) to these posts

2 / 32



Facebook Data

• Facebook provides fan page data through Graph API

• Specify fan page ideological universe

▸ 1475 fan pages of national politicians

↝Members and candidates of Senate, House, and Governors

▸ Top 1000 pages related to 2016 presidential election

↝ In Aug 2016, nd all pages mentioned “Trump” and “Clinton”

↝Weight by likes, comments, shares, nd top 1000 pages

↝ Includes all major news outlets, interest groups, parties, etc

↝ NYT, Fox News, NRA, RNC, Occupy Wall St, Tea Party, 9GAG, ...

• Collect all 24M posts in 2015 and 2016 on these pages

• And user’s 19B reactions (mostly likes) to these posts

2 / 32



Facebook Data

• Facebook provides fan page data through Graph API

• Specify fan page ideological universe

▸ 1475 fan pages of national politicians

↝Members and candidates of Senate, House, and Governors

▸ Top 1000 pages related to 2016 presidential election

↝ In Aug 2016, nd all pages mentioned “Trump” and “Clinton”

↝Weight by likes, comments, shares, nd top 1000 pages

↝ Includes all major news outlets, interest groups, parties, etc

↝ NYT, Fox News, NRA, RNC, Occupy Wall St, Tea Party, 9GAG, ...

• Collect all 24M posts in 2015 and 2016 on these pages

• And user’s 19B reactions (mostly likes) to these posts

2 / 32



Facebook Data

• Facebook provides fan page data through Graph API

• Specify fan page ideological universe

▸ 1475 fan pages of national politicians

↝Members and candidates of Senate, House, and Governors

▸ Top 1000 pages related to 2016 presidential election

↝ In Aug 2016, nd all pages mentioned “Trump” and “Clinton”

↝Weight by likes, comments, shares, nd top 1000 pages

↝ Includes all major news outlets, interest groups, parties, etc

↝ NYT, Fox News, NRA, RNC, Occupy Wall St, Tea Party, 9GAG, ...

• Collect all 24M posts in 2015 and 2016 on these pages

• And user’s 19B reactions (mostly likes) to these posts

2 / 32



Facebook Data

• Facebook provides fan page data through Graph API

• Specify fan page ideological universe

▸ 1475 fan pages of national politicians

↝Members and candidates of Senate, House, and Governors

▸ Top 1000 pages related to 2016 presidential election

↝ In Aug 2016, nd all pages mentioned “Trump” and “Clinton”

↝Weight by likes, comments, shares, nd top 1000 pages

↝ Includes all major news outlets, interest groups, parties, etc

↝ NYT, Fox News, NRA, RNC, Occupy Wall St, Tea Party, 9GAG, ...

• Collect all 24M posts in 2015 and 2016 on these pages

• And user’s 19B reactions (mostly likes) to these posts

2 / 32



Data Summary

Time Period 2015-01-01 to 2016-11-30

Total Reactions 19,085,783,534

US Political User Likes 16,180,488,916

Total Users 366,840,068

US Political Users 29,412,610

Total Posts 24,788,093

Total Pages 2132

Politicians 1225

News Outlets 560

Political Groups 211

Other Public Figures 93

Others 43
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Estimation: Shared Users Matrix

• Measure ideology of pages, then measure those of users

↝ Similar to Bond and Messing (2015, APSR)

• First build the page by page afliation matrix A
↝ Number of shared users (based on likes) between pages

Trump FoxNews TeaParty Clinton CNN NYTimes

Trump 2243216 1078513 128225 32731 120963 25842

FoxNews 1078513 2449174 148016 87084 186850 63401

TeaParty 128225 148016 242089 1528 10738 2162

Clinton 32731 87084 1528 1768980 351210 367021

CNN 120963 186850 10738 351210 1201156 216163

NYTimes 25842 63401 2162 367021 216163 986613
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Estimation: Transform to Ratios

• Transform A to matrix of ratios G, where gi j = ai j/aii

↝ 0.44 = Pr (Trump ∩ FoxNews)
Pr (FoxNews)

= Pr (Trump ∣FoxNews)

• Can interpret columns as features and rows as observations

↝ Col 1 is how each row similar to “Trump” feature

Trump FoxNews TeaParty Clinton CNN NYTimes

Trump 1.00 0.48 0.06 0.01 0.05 0.01

FoxNews 0.44 1.00 0.06 0.04 0.08 0.03

TeaParty 0.53 0.61 1.00 0.01 0.04 0.01

Clinton 0.02 0.05 0.00 1.00 0.20 0.21

CNN 0.10 0.16 0.01 0.29 1.00 0.18

NYTimes 0.03 0.06 0.00 0.37 0.22 1.00
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Estimation: Dimension Reduction

• Compute the principal components of G after standardizing

• PC1 is the dimension explains the largest variation

↝ Unsupervised⇒ Guess and verify PC1 is related to “ideology”

• User ideology =mean ideology of pages user liked

• Guess user’s state residence by their likes on national politicians

↝ Like more politicians from NY⇒More likely from NY
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Validation for Congressional Politicians

ρ = 0.92
ρR = 0.50
ρD = 0.22

Schumer

McConnellMcCain

Pelosi

Sanders

Ryan

Rubio

Warren

Cruz

Booker-1.0

-0.5

0.0

0.5

1.0

-2 -1 0 1 2
Estimated Facebook Page Ideology Score, 2015-01 to 2016-11

DW
-N

om
in

at
e 

Sc
or

e 
of

 1
14

th
 C

on
gr

es
s Democratic Party

Independent

Republican Party

Using politician and top 1000 page matrix
11 / 32



Validation for Media
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User Ideology Density by States
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Media Ideology Dynamics
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Politician Ideology Dynamics
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FB Support Rates, Polls, and Vote Shares

• Apply the Hotelling-Downs spatial model for voting: Voters

support candidates closer to their own ideological location

• In each state, we compare:

▸ FB support rate: Share of user’s ideology closer to Trump or Clinton

↝May not be a precise estimator for vote shares

↝ Since turnouts may not be the same across states

↝ But adding assumptions may look like tting the data

▸ Polls: State polling averages calculated by FiveThirtyEight

▸ Actual vote shares in 2016 election
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Predicting Vote Shares and Outcomes
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Compare withMajor Forecasters

Battleground States E.V.† Winner FB 538 NYT PEC*

Florida 29 Trump ○ × × ×
Pennsylvania 20 Trump ○ × × ×
Wisconsin 10 Trump ○ × × ×
Michigan 16 Trump × × × ×
Ohio 18 Trump ○ ○ ○ ○
Iowa 6 Trump ○ ○ ○ ○
Montana 3 Trump × ○ ○ ○
Alaska 3 Clinton × ○ ○ ○
Maine 2 Clinton × ○ ○ ○

Trump’s Electoral Vote 306 292 235 216 215

† Electoral Votes. * Princeton Election Consortium.
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Predicting Electoral Votes
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Trump: FB (Dotted), Polls, and Vote Shares
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Clinton: FB (Dotted), Polls, and Vote Shares
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Polls Overestimates Clinton in Red and Swing States
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FB Overestimates Trump in Red and Swing States
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Discussions

• Strengths of Facebook based prediction:

▸ Revealed preference instead of self-report

▸ Low cost and almost in real time

▸ Trace individuals repeatedly over time

▸ Overestimation for winners can help to make predictions

• Weaknesses, compared to polls or surveys:

▸ Not representative

↝ Can reweight if more social-demographic information is known

▸ Hard to link with ofine behaviors

↝ Ex. “Strong supporter” vs. “Likely voter”

• Can complement each other if more research try to link the two
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Working on: Effect of Fake News

• Joint with Chun-Fang Chiang, Brian Knight, and Ming-Jen Lin

• Would consuming fake news change people’s ideology or

information consumption?

• If so, what kind of fake stories have larger effect, and why?

• Fake news pool on Facebook:

▸ Top 40 fake stories, 536 posts, 130 pages

▸ Posts link to fake domains, 139,074 posts, 177 pages
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Strategies for Identication

• Challenges:
▸ People “like” fake post may be very different

▸ Pages posting fake posts may attract very different users

▸ Some stories may be “too fake” for people to believe, even backre

• For each fake post, we:
▸ Find nonfake pages very similar to fake page through different

matching methods as control

▸ Find potential followers of these pages, instead of “likes”

▸ Compare the ideology of these fake and nonfake followers before

and after fake page unexpectedly started posting fake story

Ideologyit = α 1(Aftert) + γ1(FollowFakei)

+ β1(FollowFakei)1(Aftert) + εit
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Story Level Ideology Change for Following Pages Sharing Pro−Trump Fake News
Week +1 to −1, DiD Estimates with Individual Fixed Effects and 99.9% CI

5−NN Matching ● 10−NN Matching 5−Nearest PS Matching 10−Nearest PS Matching

Pentagon furious Clinton nuclear response time
Clinton financial connection to Saudi Arabia
Wikileaks: Clinton sold weapons to ISIS
Pope Francis endorses Trump
Trump sends own plane to transport marines
Obama refuses to leave office if Trump elected
Clinton HIV secret revealed
Clinton goes to Texas Muslim fundraiser
Associate to testify against Clinton dead
Stanford University: Dem election fraud
Trump protester: I was paid to protest
Official to testifiy against Clinton dead
Uncounted Sanders ballots on Clinton server
Clinton ISIS email leaked
ISIS leader calls voters support Clinton
Clinton disqualified holding Federal office
Clinton tells nuclear launch response time
Bill Clinton 2000 sex partners, Hillary lesbian
Billy Graham STUNNING statement on Trump
Putin: Emails reveal Clinton threatens Sanders
Graham: Christians must support Trump
Clinton email reopens, Comey asks immunity
Clinton to be indicted, prayers answered
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Story Level Ideology Change for Following Pages Sharing Pro−Clinton Fake News
Week +1 to −1, DiD Estimates with Individual Fixed Effects and 99.9% CI
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Palin to become Trump VP

Rupaul: Trump touched me inappropriately

Trump critical condition choking own bullshit

Ireland accepts Trump refugees

Rage Against the Machine anti Trump album

Trump: Giving Canada independence mistake

Trump U offers Palin honorary climate degree

Mexico will close border if Trump elected

Trump: I will overtern shocking gay marriage

Trump picks Stacey Dash as VP

Pence: Michelle Obama most vulgar FLOTUS

Palin endorses Cruz

Sauron endorses Trump

Trump sues Chicago after forced to cancel rally
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