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Data: Twitter timeline

Sample Random Political

# users 5,000 5,000

# tweets & retweets 31,038,705 35,932,231

% tweets 40% 37%

% retweets 60% 63%

% has image 18% 14%

• Random: Random set of 
5,000 accounts geolocated 
to the United States

• Political: Follow at least 5 
US political Twitter 
accounts (e.g. Senate, 
House, Governors)

• Collect shared images from 
their timeline
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Identify visually-similar imagery

Cluster  

K-means

Extract visual 
features 

ResNet50

10M x 2048-dim 
embedding

10M images 

Distribution of clusters 

for each user

K = 20 types of 
imagery
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• Logistic regression at user level   —   For each user i:

User-level cluster 
distribution

Gender 

Race 

Age
Predictive power of 

clusters k on 
demography d
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Findings

• Politically engaged and general 
audiences post largely similar 
distributions of political imagery

• Overall, around half of the clusters 
contain predictive information 
about the account’s race, gender, 
age, and political engagement

• Implications for “content-based” 
information targeting



Thank you!   Questions?

Keng-Chi Chang  ∙  @kengchichang  ∙  kechang@ucsd.edu 
Cody Buntain  ∙  @codybuntain  ∙  cbuntain@umd.edu
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