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to understanding
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Research questions

 What types of image
sharing behavior are
predictive of the
account’s
demographic
backgrounds?

* Do politically
engaged accounts
share different types
of imagery?
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Challenge!!

e No ground truth
for
demographics!

e Construct proxies
for demographics
from profile
pictures
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Existing public face image datasets are strongly biased
toward Caucasian faces, and other races (e.g., Latino) are
significantly underrepresented. The models trained from
such datasets suffer from inconsistent classification accu-
racy, which limits the applicability of face analytic systems
to non-White race groups. To mitigate the race bias prob-
lem in these datasets, we constructed a novel face image
dataset containing 108,501 images which is balanced on
race. We define 7 race groups: White, Black, Indian, East
Asian, Southeast Asian, Middle Eastern, and Latino. Im-
ages were collected from the YFCC-100M Flickr dataset
and labeled with race, gender, and age groups. Evalu-
ations were performed on existing face attribute datasets
as well as novel image datasets to measure the generaliza-
tion performance. We find that the model trained from our
dataset is substantially more accurate on novel datasets and
the accuracy is consistent across race and gender groups.
We also compare several commercial computer vision APlIs
and report their balanced accuracy across gender, race, and
age groups. QOur code, data, and models are available at
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FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age
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(around 80%), e.g. White, compared to “darker” faces, e.g.
Black [40]. This means the model may not apply to some
subpopulations and its results may not be compared across
different groups without calibration. Biased data will pro-
duce biased models trained from it. This will raise ethical
concerns about fairess of automated systems, which has
emerged as a critical topic of study in the recent machine
learning and Al literature [16, 11].

For example, several commercial computer vision sys-
tems (Microsoft, IBM, Face++) have been criticized due to
their asymmetric accuracy across sub-demographics in re-
cent studies [7, 44]. These studies found that the commer-
cial face gender classification systems all perform better on
male and on light faces. This can be caused by the biases
in their training data. Various unwanted biases in image
datasets can easily occur due to biased selection, capture,
and negative sets [60]. Most public large scale face datasets
have been collected from popular online media — newspa-
pers, Wikipedia, or web search— and these platforms are
more frequently used by or showing White people.

To mitigate the race bias in the existing face datasets, we
propose a novel face dataset with an empha51s on balanced
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Abstract

Existing public face image datasets are strongly biased
toward Caucasian faces, and other races (e.g., Latino) are
significantly underrepresented. The models trained from
such datasets suffer from inconsistent classification accu-
racy, which limits the applicability of face analytic systems
to non-White race groups. To mitigate the race bias prob-
lem in these datasets, we constructed a novel face image
dataset containing 108,501 images which is balanced on
race. We define 7 race groups: White, Black, Indian, East
Asian, Southeast Asian, Middle Eastern, and Latino. Im-
ages were collected from the YFCC-100M Flickr dataset
and labeled with race, gender, and age groups. Evalu-
ations were performed on existing face attribute datasets
as well as novel image datasets to measure the generaliza-
tion performance. We find that the model trained from our
dataset is substantially more accurate on novel datasets and
the accuracy is consistent across race and gender groups.
We also compare several commercial computer vision APIs
and report their balanced accuracy across gender, race, and
age groups. Our code, data, and models are available at
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Data: Twitter timeline

e Random: Random set of Sample Random Political
5,000 accounts geolocated
to the United States # users 5000 5000

* Political: Follow at least 5 # tweets & retweets 31,038,705 35,932,231
us political Twitter ...~~~
accounts (e.g. Senate, 0% tweets 40% 370,
House, Governors) T T T

% retweets 60% 63%

e (Collect shared images from
their timeline
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Ildentify visually-similar imagery
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Ildentify visually-similar imagery
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Ildentify visually-similar imagery
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Which clusters are predictive of demography?

* Logistic regression at user level — For each useri:

Z 8 # i |mages in cluster k shared by user i
k

logit (demography; = d)

/ # images shared by user 1

GICK Y Gender
@@@ Race
@@ Age

Y MOR )
PR ®

‘|‘£'i




Which clusters are predictive of demography?

* Logistic regression at user level — For each useri:
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Which clusters are predictive of demography?

* Logistic regression at user level — For each useri:

logit (demography; = d

/ # images shared by user 1
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Outcome: Race = White, Logistic Regression
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Thank you! Questions?

Keng-Chi Chang - @kengchichang - kechang@ucsd.edu

Cody Buntain - @codybuntain - cbuntain@umd.edu
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